Oct 26, 2020 Thread starter #1 S solakis Active member Dec 9, 2012 352 Solve the following systemof equations: $\dfrac{xy}{x+y}=a$ $\dfrac{yz}{y+z}=b$ $\dfrac{zx}{z+x}=c$ where a,b,c are not zero
Solve the following systemof equations: $\dfrac{xy}{x+y}=a$ $\dfrac{yz}{y+z}=b$ $\dfrac{zx}{z+x}=c$ where a,b,c are not zero
Oct 31, 2020 #2 kaliprasad Well-known member Mar 31, 2013 1,331 solakis said: Solve the following systemof equations: $\dfrac{xy}{x+y}=a$ $\dfrac{yz}{y+z}=b$ $\dfrac{zx}{z+x}=c$ where a,b,c are not zero Click to expand... Spoiler: my Solution Inverting the 3 we get $\frac{1}{y} + \frac{1}{x} = \frac{1}{a}\dots(1)$ $\frac{1}{y} + \frac{1}{z} = \frac{1}{b}\dots(2)$ $\frac{1}{z} + \frac{1}{x} = \frac{1}{c}\dots(3)$ Add the 3 to get $2(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ Or $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$ Subtracting (1) from above we get $\frac{1}{z} = \frac{1}{2}(\frac{1}{b} + \frac{1}{c}- \frac{1}{a})$ Or $\frac{1}{z} = \frac{1}{2}\frac{ac + ab - bc}{abc}$ Or $z= \frac{2abc}{ac + ab - bc}$ Similarly $x= \frac{2abc}{ab + bc - ac}$ And $y= \frac{2abc}{ac - ab + bc}$
solakis said: Solve the following systemof equations: $\dfrac{xy}{x+y}=a$ $\dfrac{yz}{y+z}=b$ $\dfrac{zx}{z+x}=c$ where a,b,c are not zero Click to expand... Spoiler: my Solution Inverting the 3 we get $\frac{1}{y} + \frac{1}{x} = \frac{1}{a}\dots(1)$ $\frac{1}{y} + \frac{1}{z} = \frac{1}{b}\dots(2)$ $\frac{1}{z} + \frac{1}{x} = \frac{1}{c}\dots(3)$ Add the 3 to get $2(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ Or $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$ Subtracting (1) from above we get $\frac{1}{z} = \frac{1}{2}(\frac{1}{b} + \frac{1}{c}- \frac{1}{a})$ Or $\frac{1}{z} = \frac{1}{2}\frac{ac + ab - bc}{abc}$ Or $z= \frac{2abc}{ac + ab - bc}$ Similarly $x= \frac{2abc}{ab + bc - ac}$ And $y= \frac{2abc}{ac - ab + bc}$
Nov 1, 2020 Thread starter #4 S solakis Active member Dec 9, 2012 352 solakis said: very good Click to expand...