- Thread starter
- #1
[tex]\text{Solve the following system of equations in real numbers:}[/tex]
. . [tex]\begin{array}{ccc}\sqrt{x^2-2x+6}\cdot \log_{3}(6-y) &=&x \\
\sqrt{y^2-2y+6}\cdot \log_{3}(6-z) &=& y \\
\sqrt{z^2-2z+6}\cdot\log_{3}(6-x)&=&z\end{array}[/tex]
Hello, jacks!
I agree with pickslides . . .
Due to the symmetry, I assume that [tex]x = y = z.[/tex]
Then we have: .[tex]\sqrt{x^2-2x+6}\cdot \log_3(6-x) \:=\:x[/tex]
By inspection, we see that: .[tex]x\,=\,3.[/tex]