- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,812
Solve the system $x^5+y^5=33,\,x+y=3$.
$(x+y)^5=x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4=33+5xy(x^3+y^3)+10x^2y^2(x+y)=
=33+5xy((x+y)^3-3xy(x+y))+30x^2y^2= 33+5xy(27-9xy)+30x^2y^2=243$
or
$15x^2y^2-135xy+210=0$
or
$x^2y^2-9xy+14=0$
And xy=7 or xy=2 impling the following 2 systems of equations :
x+y=3. (A)
xy=2
x+y=3 (B)
xy=7
And (A) gives (x=1,y=2),(x=2,y=1) (B) has no real solutions