- Thread starter
- #1

#### hxthanh

##### New member

- Sep 20, 2013

- 16

$\displaystyle\sum_{k=0}^n \frac{\cos(k x)}{\cos^kx} = \frac{1+(-1)^n}{2\cos^nx} + \dfrac{2\sin\big(\lfloor\frac{n+1}{2}\rfloor x\big) \cos\big(\lfloor\frac{n+2}{2}\rfloor x\big)} {\sin x\cos^n x} \qquad\qquad (\frac{2x}{\pi}\not\in \mathbb Z)$

*note: $\lfloor x\rfloor$ is floor function of $x$