Aug 8, 2020 Thread starter Admin #1 anemone MHB POTW Director Staff member Feb 14, 2012 3,812 Evaluate $\displaystyle \sum_{n=0}^\infty \dfrac{16n^2+20n+7}{(4n+2)!}$.
Aug 21, 2020 Thread starter Admin #2 anemone MHB POTW Director Staff member Feb 14, 2012 3,812 Spoiler: Solution of other Consider the following two power series, $\displaystyle \sin x=\sum_{n=0}^\infty (-1)^n\cdot \dfrac{x^{2n+1}}{(2n+1)!}$ and $\displaystyle e^x=\sum_{n=0}^\infty \dfrac{x^{n}}{n!}$, $x\in \mathbb{R} $ Hence we have $\displaystyle \sin 1=\sum_{n=0}^\infty (-1)^n\cdot \dfrac{1}{(2n+1)!}=\sum_{n=0}^\infty \left(\dfrac{1}{(4n+1)!}-\dfrac{1}{(4n+3)!}\right)$ and $\displaystyle e=\sum_{n=0}^\infty \dfrac{1}{n!}$ Using the above considerations we get $\displaystyle \begin{align*} \sum_{n=0}^\infty \dfrac{16n^2+20n+7}{(4n+2)!}&=\sum_{n=0}^\infty \dfrac{(4n+2)(4n+1)+2(4n+2)+1}{(4n+2)!}\\&=\sum_{n=0}^\infty \left(\dfrac{1}{(4n)!}+\dfrac{2}{(4n+1)!}+\dfrac{1}{(4n+2)!}\right)\\&=\sum_{n=0}^\infty \dfrac{1}{n!}+\sum_{n=0}^\infty \left(\dfrac{1}{(4n+1)!}-\dfrac{1}{(4n+3)!}\right)\\&=e+\sin 1\end{align*}$
Spoiler: Solution of other Consider the following two power series, $\displaystyle \sin x=\sum_{n=0}^\infty (-1)^n\cdot \dfrac{x^{2n+1}}{(2n+1)!}$ and $\displaystyle e^x=\sum_{n=0}^\infty \dfrac{x^{n}}{n!}$, $x\in \mathbb{R} $ Hence we have $\displaystyle \sin 1=\sum_{n=0}^\infty (-1)^n\cdot \dfrac{1}{(2n+1)!}=\sum_{n=0}^\infty \left(\dfrac{1}{(4n+1)!}-\dfrac{1}{(4n+3)!}\right)$ and $\displaystyle e=\sum_{n=0}^\infty \dfrac{1}{n!}$ Using the above considerations we get $\displaystyle \begin{align*} \sum_{n=0}^\infty \dfrac{16n^2+20n+7}{(4n+2)!}&=\sum_{n=0}^\infty \dfrac{(4n+2)(4n+1)+2(4n+2)+1}{(4n+2)!}\\&=\sum_{n=0}^\infty \left(\dfrac{1}{(4n)!}+\dfrac{2}{(4n+1)!}+\dfrac{1}{(4n+2)!}\right)\\&=\sum_{n=0}^\infty \dfrac{1}{n!}+\sum_{n=0}^\infty \left(\dfrac{1}{(4n+1)!}-\dfrac{1}{(4n+3)!}\right)\\&=e+\sin 1\end{align*}$