- Thread starter
- #1
Could you help me solve this problem?
Let $M$ be a submanifold of dimension $d ={1,...,n-1}$ class $\mathcal{C}^1$ in $\mathbb{R}^n$.
Fix $a \in \mathbb{R}^n \setminus M$.
Let $x \in M$ be such that $||x-a||=\inf \{||y-a|| \ : \ y \in M \}$, where $|| \cdot ||$ is a Euclidean norm in $\mathbb{R}^n$.
Prove that $x-a$ is orthogonal to $T_xM$.
$T_xM$ is the tangent space.
Thank you for your help.
Let $M$ be a submanifold of dimension $d ={1,...,n-1}$ class $\mathcal{C}^1$ in $\mathbb{R}^n$.
Fix $a \in \mathbb{R}^n \setminus M$.
Let $x \in M$ be such that $||x-a||=\inf \{||y-a|| \ : \ y \in M \}$, where $|| \cdot ||$ is a Euclidean norm in $\mathbb{R}^n$.
Prove that $x-a$ is orthogonal to $T_xM$.
$T_xM$ is the tangent space.
Thank you for your help.