- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,682

- Thread starter anemone
- Start date

- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,682

- Admin
- #2

\(\displaystyle \frac{(x-1)(x-3)+(x+1)\sqrt{(x+3)(x-3)}}{(x+1)(x+3)+(x-1)\sqrt{(x+3)(x-3)}}\)

Factoring further, we obtain:

\(\displaystyle \frac{\sqrt{x-3}((x-1)\sqrt{x-3}+(x+1)\sqrt{x+3})}{\sqrt{x+3}((x+1)\sqrt{x+3}+(x-1)\sqrt{x-3})}\)

Dividing out the common factors, we are left with:

\(\displaystyle \sqrt{\frac{x-3}{x+3}}\)

- Thread starter
- Admin
- #3

- Feb 14, 2012

- 3,682

Bravo, Mark!