Welcome to our community

Be a part of something great, join today!

Simplify Radical Expression

Albert

Well-known member
Jan 25, 2013
1,225
simplify:

$\sqrt {21-4 \sqrt 5 +8\sqrt 3 - 4\sqrt {15}}$
 

MarkFL

Administrator
Staff member
Feb 24, 2012
13,775
Here is my solution:

\(\displaystyle 21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}=\)

\(\displaystyle 4+4\sqrt{3}-2\sqrt{5}+4\sqrt{3}+12-2\sqrt{15}-2\sqrt{5}-2\sqrt{15}+5=\)

\(\displaystyle \left(2+2\sqrt{3}-\sqrt{5} \right)^2\)

Hence:

\(\displaystyle \sqrt{21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}}=2+2\sqrt{3}-\sqrt{5}\)
 

Albert

Well-known member
Jan 25, 2013
1,225
Here is my solution:

\(\displaystyle 21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}=\)

\(\displaystyle 4+4\sqrt{3}-2\sqrt{5}+4\sqrt{3}+12-2\sqrt{15}-2\sqrt{5}-2\sqrt{15}+5=\)

\(\displaystyle \left(2+2\sqrt{3}-\sqrt{5} \right)^2\)

Hence:

\(\displaystyle \sqrt{21+8\sqrt{3}-4\sqrt{5}-4\sqrt{15}}=2+2\sqrt{3}-\sqrt{5}\)
good solution :)