# Simplify Multiplication of Fractions

#### Albert

##### Well-known member
$\dfrac{3}{3\times 4}+\dfrac{4}{3\times 4\times 5}+\dfrac{5}{3\times 4\times 5\times 6}+\cdots+\dfrac {99}{3\times 4\times 5\times 6\times \cdots\times 99\times 100}$

Last edited by a moderator:

#### ZaidAlyafey

##### Well-known member
MHB Math Helper
Re: count value

$\dfrac{3}{3\times 4}+\dfrac{4}{3\times 4\times 5}+\dfrac{5}{3\times 4\times 5\times 6}+ \cdots +\dfrac {99}{3\times 4\times 5\times 6\times \cdots \times 99\times 100}$
$=2 \left( \dfrac{3}{2 \times 3\times 4}+\dfrac{4}{2\times 3\times 4\times 5}+\dfrac{5}{2\times 3\times 4\times 5\times 6}+ \cdots +\dfrac {99}{2 \times 3\times 4\times 5\times 6\times \cdots \times 99\times 100} \right)$

$$\displaystyle =2 \sum^{100}_ {n=4} \frac{n-1}{n!}=2 \sum^{100}_ {n=4} \frac{1}{(n-1)!}-\frac{1}{n!}$$

The sum is telescoping

$$\displaystyle 2\left( \dfrac{1}{3!} -\dfrac{1}{4!} + \dfrac{1}{4!} - \dfrac{1}{5!} + \frac{1}{5!}-\frac{1}{6!}+ \cdots +\dfrac {1}{99!} - \dfrac {1}{100!} \right)= 2 \left(\dfrac{1}{3!}-\dfrac{1}{100!} \right)$$