- Thread starter
- #1
$f(z) = \prod\limits_{n=1}^{\infty}\left(1+z^{2^n}\right)$ converges on the open disc $D(0,1)$ to the function $\dfrac{1}{1-z}$.
To show convergence, I look at
$$
\sum_{n=1}^{\infty}\left|z^{2^n}\right|
$$
correct?
The sum, $\sum\limits_{n = 0}^{\infty}|z|^{2^{n}}$, converges for $|z| < 1$ i.e. we have a geometric series.
So
$$
\sum_{n = 0}^{\infty}|z|^{2^{n}} = \frac{1}{1 - z},
$$
for $|z| < 1$
Is this convergence uniform on compact subsets of $D(0,1)$?
To show convergence, I look at
$$
\sum_{n=1}^{\infty}\left|z^{2^n}\right|
$$
correct?
The sum, $\sum\limits_{n = 0}^{\infty}|z|^{2^{n}}$, converges for $|z| < 1$ i.e. we have a geometric series.
So
$$
\sum_{n = 0}^{\infty}|z|^{2^{n}} = \frac{1}{1 - z},
$$
for $|z| < 1$
Is this convergence uniform on compact subsets of $D(0,1)$?
Last edited: