Should DC operated oil rigs convert to AC?

In summary, AC is not always more efficient than DC and can be more costly to maintain. DC rig operations have been in existence for many years and have proven reliable so, why the interest in AC?
  • #1
worldwidescr
5
0
Today’s world would seem to dictate that a changeover is needed from DC powered operations to AC for drilling rigs. Is this actually true? Is AC a better deal or a sleeping dog best left alone? DC rig operations have been in existence for many years and have proven reliable so, why the interest in AC?
It is often stated by those suppliers of AC equipment that their AC drives and motors are more efficient than DC (why not, if I sold blue cars they would absolutely be better than red ones). Let’s think about all this for a moment. The AC variable speed drive is a component that requires two stages of operation. First, the incoming AC main is converted into DC in order for the drive electronics to manipulate the signal. This is accomplished through the use of rectifiers for conversion and capacitors for filtering. These components are susceptible to failure and can be very costly to replace, not to mention the amount of energy used at this first stage. Now that DC is present in the drive, giant transistors (IGBT) are used to reproduce a simulated AC for the motor (hence the term inverter). The IGBTs’ (Insulated Gate Bipolar Transistor) or giant transistors are another component which can fail, and are expensive, not to mention the cost of replacement for the AC drive electronics. Though this signal is not truly AC it is close enough that the motor can use it. This process alone introduces another factor, the motors must be able to handle this PWM (Pulse Width Modulation) produced signal or early failure will occur; the motor will burn up (they generally do anyway; it is the lamination that poses the problem, oh, and the bearings as well). The DC drive has only one stage, the AC is converted to DC performed by SCR’s (Silicon Controlled Rectifier) for a pure DC output; manipulated by firing the gate for control the signal is sent directly to the DC motor, how more simple can that be? DC drive components are far fewer and less expensive to replace. Failure on an AC system can be catastrophic. So much for efficiency of the drive and motor; what about power, speed control, and braking? Glad you asked.
Can more power, or torque, be achieved by changing to an AC system? Yes and no. The paradox of which gives more power is dependent on differing factors. These factors are speed and horsepower. At lower speeds the DC motor far excels the AC. In a lower HP range up to 100, the AC seems to have better characteristics. In the higher HP ranges the DC motor overcomes its inefficiencies. In order for the AC to deliver equivalent power throughout, Vector control would be required (here again efficiency is lost).
Ok, so now we have a rig with centrifugal mud pumps and we want to control speed, well not really. We want to control strokes and pressure; we don’t care what the speed is. Power is needed and DC is the answer. All that is applicable is a simple drive, inexpensive components, easy replacement, basic operations and troubleshooting so, why the AC here? Draw works? Same principle, here you want power. DC delivers that power dependably. Speed control is not that precise on a draw works that I have experienced. Since we mentioned precise speed control, use an encoder with any system you have, problem solved. True, if we only used armature feedback to calculate speed on a DC drive we could not have accurate control so, put on an encoder and use tachometer feedback. Good practice for the rotary table here. So, where do we want accurate speed control on a rig? The rotary table or top drive and that’s all. In the addition of a top drive it may be beneficial to be AC with its own power generating station, this is still debatable.
Braking, a non-regenerative DC bridge is less expensive than an AC braking system. The braking system of a DC motor is simplistic compared to that of its AC neighbor. Braking in an AC drive system has a tendency to destroy itself if not implemented correctly. The energy during braking must be absorbed somewhere, either back through the circuit possibly destroying expensive parts or through a Dynamic Braking system with resistors and a chopper network. Overall DC wins here.
So, do we change the DC rig over to AC? If the money is there to spend then go for it. Oh, did we mention the fact that most rig electricians would be totally lost with the AC drive systems? And by the way, on a DC rig any motor may be operated by either SCR drive, they are all the same; not so with the AC rig, if one drive fails that’s it unless you have a technician that can make the necessary changes on site, the draw works drive parameters are far different than the mud pump. Don’t forget about the harmonics introduced with the AC system. Did we mention that the AC motors should be underrated? In other words a 20 HP AC motor should be used where a 15 HP is needed. Ok, noted the DC motor has brushes. So, keep the commutator clean and replace the brushes on a regular schedule.
 
Engineering news on Phys.org
  • #2
The driving force behind the choice to convert to AC (back in the days of Tesla and Westinghouse) was the simple fact that line-losses over long distances could be limited by the change, and the lines did not have to be as large as would be required by a DC system. DC can work very well, can in fact be more efficient than AC when we don't have to factor in transmission line-loss. Since nobody is going to start running transmission lines from the shore to oil rigs, what's the problem with them running their systems on DC?
 
  • #3
The AC motor has bearings, replace them when they fail.

I believe it is important to approach this question objectively and consider all factors before making a decision. While it may seem like a change to AC powered operations is necessary in today's world, it is important to carefully evaluate the benefits and drawbacks of such a conversion.

Firstly, the argument that AC equipment is more efficient than DC may not be entirely accurate. While AC drives and motors may have higher efficiency ratings, they also require more components and stages of operations, which can make them more susceptible to failure and costly to replace. In contrast, DC drives have fewer components and are simpler in design, making them less prone to failure and less expensive to maintain. Therefore, the efficiency argument may not be enough to justify a conversion to AC.

Furthermore, the idea that AC can deliver more power or torque than DC is not necessarily true. The power output of both systems is dependent on various factors, and in some cases, DC may actually excel in delivering power. Additionally, for tasks such as controlling speed and pressure in drilling rigs, DC may be a more suitable and reliable option.

Another important consideration is the expertise and familiarity of rig electricians with AC systems. As mentioned in the content, most rig electricians are trained and experienced in working with DC systems. A conversion to AC would require additional training and may lead to complications and delays in operations if any issues arise.

In conclusion, while the idea of converting to AC may seem appealing in today's world, it is important to carefully evaluate the benefits and drawbacks before making a decision. Factors such as reliability, maintenance costs, and expertise should be taken into account. Ultimately, the best option may vary depending on the specific needs and operations of each rig.
 

Related to Should DC operated oil rigs convert to AC?

1. What are the advantages of converting DC operated oil rigs to AC?

Converting DC operated oil rigs to AC can improve efficiency, reduce maintenance costs, and increase safety. AC power systems can handle higher voltages, allowing for longer distances between power sources and equipment. They also have fewer moving parts, making them easier to maintain and less prone to breakage. Additionally, the use of AC power can reduce the risk of electrical shock and fire hazards on oil rigs.

2. Are there any disadvantages to converting DC operated oil rigs to AC?

One potential disadvantage of converting DC operated oil rigs to AC is the initial cost. Converting an entire rig can be expensive, as it requires new equipment and rewiring of the entire system. Additionally, there may be a learning curve for rig operators and maintenance crews who are used to working with DC systems. However, these initial costs may be offset by long-term savings in maintenance and safety.

3. What are the technical considerations for converting DC operated oil rigs to AC?

Converting a DC system to AC involves replacing the power generation equipment, transformers, and control systems. The existing wiring and cabling may also need to be replaced or modified. It is important to carefully plan and engineer the conversion to ensure compatibility and safety. Additionally, the rig may need to be shut down for a period of time during the conversion process.

4. How does the choice of AC or DC power affect the drilling process?

The choice of AC or DC power does not have a direct impact on the drilling process itself. However, the use of AC power can potentially improve the efficiency and reliability of other equipment on the rig, such as pumps and motors. This can indirectly improve the overall drilling process and productivity.

5. Are there any regulations or standards that dictate the use of AC or DC power on oil rigs?

There are no specific regulations or standards that dictate the use of AC or DC power on oil rigs. However, there are industry best practices and recommendations that suggest the use of AC power for safety and efficiency reasons. Ultimately, the decision to convert to AC power should be based on a thorough evaluation of the rig's needs and capabilities.

Similar threads

  • Electrical Engineering
Replies
3
Views
804
  • Electrical Engineering
Replies
8
Views
1K
Replies
6
Views
2K
Replies
16
Views
2K
  • Electrical Engineering
Replies
26
Views
2K
  • Electrical Engineering
Replies
9
Views
7K
  • Electrical Engineering
Replies
6
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
  • Electrical Engineering
Replies
3
Views
1K
Back
Top