Welcome to our community

Be a part of something great, join today!

Set theory


Active member
Dec 9, 2012
\(\displaystyle x\in A\cap B\leftrightarrow x\in A\wedge x\in B\)
\(\displaystyle x\in A\cup B\leftrightarrow x\in A\vee x\in B\)
\(\displaystyle x\in A-B\leftrightarrow x\in A\wedge x\notin B\)
\(\displaystyle A=B\leftrightarrow(\forall x(x\in A\leftrightarrow x\in B))\)

Then prove using only the above and the laws of logic that:

\(\displaystyle (A\cup B)-(A\cap B)=(A-B)\cup(B-A)\)