- Thread starter
- #1

- Jan 29, 2012

- 661

Here is a link to the question:i have no idea...

Find Laurent series for cosz/z centered at z=0? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

- Thread starter Fernando Revilla
- Start date

- Thread starter
- #1

- Jan 29, 2012

- 661

Here is a link to the question:i have no idea...

Find Laurent series for cosz/z centered at z=0? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

- Thread starter
- #2

- Jan 29, 2012

- 661

The Maclaurin expansion of $\cos z$ is: $$\cos z=\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(2n)!}\qquad (\forall z\in\mathbb{C})$$ so, the Laurent series expansion for $\cos z/z$ centered at $z=0$ is $$\frac{\cos z}{z}=\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n-1}}{(2n)!}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{(-1)^nx^{2n-1}}{(2n)!}\quad (0<|z|<+\infty)$$ If you have further questions, you can post them in the Analysis section.