Welcome to our community

Be a part of something great, join today!

Row Space, Column Space and Null Space

Swati

New member
Oct 30, 2012
16
1.Construct a matrix whose null space consists of all linear combination of the vectors, v1={1;-1;3;2} and v2={2,0,-2,4} (v1,v2 are column vector).


2.The equation x1+x2+x3=1 can be viewed as a linear system of one equation in three unknowns. Express its general solution as a particular solution plus the general solution of the corresponding homogeneous system.
 

caffeinemachine

Well-known member
MHB Math Scholar
Mar 10, 2012
834
1.Construct a matrix whose null space consists of all linear combination of the vectors, v1={1;-1;3;2} and v2={2,0,-2,4} (v1,v2 are column vector).


2.The equation x1+x2+x3=1 can be viewed as a linear system of one equation in three unknowns. Express its general solution as a particular solution plus the general solution of the corresponding homogeneous system.
Hello Swati.
Sorry but I can't answer your question.
Here at MHB helpers don't straightaway give you the solutions. We like to lead you to the solution and not blatantly provide the full solution. You are required to show some effort.. whatever ideas you had on how to approach your problem.
Also try to post using latex. To learn how to do that you can check out the latex help forum on the homepage.
Regards.