Question: What is the value of ⌊ 2020/(1+2+3+...+2019)⌋?

  • MHB
  • Thread starter juantheron
  • Start date
In summary, the value of $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots +2019!}\bigg\rfloor$ is 2018. This is found by using the fact that for any positive integer $n$, the value of $\displaystyle \bigg\lfloor \frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}\bigg \rfloor$ is equal to $n-2$. Therefore, when $n=2020$, the value is 2018. This solution was suggested by Ifdahl, and it is based on the fact that $
  • #1
juantheron
247
1
Finding value of $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots +2019!}\bigg\rfloor$
 
Mathematics news on Phys.org
  • #2
My attempt:
For $n > 2$ the following is true:

\[F_n = \left \lfloor \frac{(n+1)!}{1!+2!+3!+...+n!} \right \rfloor = n-1\]

Proof by induction:
Base cases:
\[F_3 =\left \lfloor \frac{4!}{1!+2!+3!} \right \rfloor = \left \lfloor \frac{24}{9} \right \rfloor = 2. \\\\ F_4 = \left \lfloor \frac{5!}{1!+2!+3!+4!} \right \rfloor = \left \lfloor \frac{120}{33} \right \rfloor = 3.\]

Suppose the identity holds for some n = m > 4. We need to show, that the identity also holds for n = m+1.

We have the identity: \[ F_m =\left \lfloor \frac{(m+1)!}{1!+2!+3!+...+m!} \right \rfloor = m-1.\]

To ease the algebra, let \[\sigma = 1!+2!+3!+...+m!\]

Then, we can write:

\[F_{m+1}=\left \lfloor \frac{(m+2)!}{1!+2!+3!+...+(m+1)!} \right \rfloor \\\\ =\left \lfloor \frac{(m+1)!}{\sigma +(m+1)!}(m+2) \right \rfloor\\\\ =\left \lfloor \frac{\frac{(m+1)!}{\sigma }}{1+\frac{(m+1)!}{\sigma }}(m+2) \right \rfloor\]

We know, that \[\frac{(m+1)!}{\sigma } = m-1+\varepsilon\] for some $0< \varepsilon<1$.

In other words: \[F_{m+1} =\left \lfloor \frac{m-1+\varepsilon }{m + \varepsilon }(m+2) \right \rfloor =\left \lfloor \left ( 1-\frac{1}{m+\varepsilon } \right )(m+2) \right \rfloor\]

Now, the fraction $\frac{m+2}{m+\varepsilon}$ has the sharp limits: \[1 < \frac{m+2}{m+\varepsilon } <2\]

This follows from the inequalities: $\varepsilon < 2 < m +2\varepsilon$

Thus the fraction can be written as: $\frac{m+2}{m+\varepsilon} = 1+\delta$ for some $0 < \delta < 1$.
Finally, we get

\[F_{m+1} =\left \lfloor m+2- (1+\delta )\right \rfloor = \left \lfloor m \right \rfloor+\left \lfloor 1-\delta \right \rfloor = m.\] q.e.d.- and we conclude, that $F_{2019}= 2018.$
 
  • #3
Thanks Ifdahl for nice solution

Here is mine

[sp]Using $n!=n(n-1)! = [(n-1)+1](n-1)! = (n-1)(n-1)!+(n-1)(n-2)!$

So $(n-1)(n-1)!+(n-1)(n-2)!<(n-1)(n-1)!+(n-1)(n-2)!+(n-1)(n-3)!+\cdots (n-1)1!\;\forall n\geq 4$

So $n!<(n-1)\bigg[(n-1)!+(n-2)!+(n-3)!+\cdots +2!+1!\bigg]\cdots \cdots (1)$

And $n!=n(n-1)!=[(n-2)+2](n-1)!=(n-2)(n-1)!+2(n-1)!=(n-2)(n-1)!+2(n-1)(n-2)!$

So $n!=(n-2)(n-1)!+(n-2)(n-2)!+n(n-2)(n-3)!$

As $n(n-3)!>(n-3)!+(n-4)!+\cdots +2!+1!\forall n\geq 4$

So $n(n-2)(n-3)!>(n-2)\bigg[(n-3)!+(n-4)!+\cdots +2!+1!\bigg]$

So $n!>(n-2)\bigg[(n-1)!+(n-2)!+\cdots\cdots +2!+1!\bigg]\cdots \cdots (2)$

From $(1)$ and $(2),$ We have

$\displaystyle (n-2)<\frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}<(n-1)$

So we get $\displaystyle \bigg\lfloor \frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}\bigg \rfloor =(n-2)$

Now put $n=2010,$ We get $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots \cdots +2019!}\bigg \rfloor =2018$[/sp]
 

Related to Question: What is the value of ⌊ 2020/(1+2+3+...+2019)⌋?

1. What does the notation ⌊x⌋ mean?

The notation ⌊x⌋ represents the floor function, which rounds a number down to the nearest integer.

2. How do you calculate the sum of consecutive numbers from 1 to n?

The sum of consecutive numbers from 1 to n can be calculated using the formula (n * (n+1)) / 2.

3. What is the value of ⌊ 2020/(1+2+3+...+2019)⌋?

The value of ⌊ 2020/(1+2+3+...+2019)⌋ is 2.

4. How can this value be applied in real-world situations?

This value can be applied in situations where we need to find an average or approximate value. For example, if we want to find the average number of days in a year over a period of 2019 years, we can use this value to approximate the answer.

5. Can this value be generalized for any number n?

Yes, this value can be generalized for any number n. The value of ⌊ n/(1+2+3+...+n-1)⌋ will always be 2.

Similar threads

Replies
19
Views
2K
Replies
9
Views
2K
  • General Math
Replies
2
Views
1K
Replies
1
Views
663
Replies
2
Views
789
  • General Math
Replies
1
Views
755
Replies
11
Views
1K
Replies
14
Views
1K
  • Math POTW for Secondary and High School Students
Replies
1
Views
1K
  • Linear and Abstract Algebra
Replies
2
Views
1K
Back
Top