- Thread starter
- #1

#### checkittwice

##### Member

- Apr 3, 2012

- 37

and, in particular, a coefficient of 1 for the nth degree (leading) term. And look at those

polynomials whose squares have the fewest number of nonzero integer coefficients

possible.

Examples:

----------

[tex](x + 1)^2 \ = \ x^2 + 2x + 1 \ \ \ \ --> \ 3 \ \ terms[/tex]

[tex](x^2 + 2x - 2)^2 \ = \ x^4 + 4x^3 - 8x + 4 \ \ \ \ --> \ 4 \ \ terms[/tex]

[tex](x^3 + x^2 + 2x - 2)^2 \ = \ x^6 + 2x^5 + 5x^4 - 8x + 4 \ \ \ \ --> \ 5 \ \ terms[/tex]

[tex](x^3 + 2x^2 - 2x - 1)^2 \ = \ x^6 + 4x^5 - 10x^3 + 4x + 1 \ \ \ \ --> \ 5 \ \ terms[/tex]

[tex](x^3 + 2x^2 - 2x + 4)^2 \ = \ x^6 + 4x^5 + 20x^2 - 16x + 16 \ \ \ \ --> \ 5 \ terms[/tex]

[tex](x^4 + 2x^3 - 2x^2 + 4x + 4)^2 \ = \ x^8 + 4x^7 + 28x^4 + 32x + 16 \ \ \ \ --> \ 5 \ terms[/tex]

__________________________________________________

Can the minimum number of nonzero integer coefficients possible

for the squares of polynomial P(x) be less than the degree of that P(x)?

** All polynomials are taken to be simplified, including having all

like terms combined.