Quantum coherence and neutrino detection

In summary, the conversation revolves around the possibility of using quantum coherence, specifically Bose-Einstein condensates (BEC), to improve measurements in various fields including neutrino detection. While there is no direct connection between BEC and neutrino detection, it is theorized that coherent states in general could potentially enhance detection capabilities. However, this is still a speculative idea and requires further research and understanding of BEC and its applications in precision measurements.
  • #1
exponent137
561
33
It is promised that the quantum coherence will help to improve various measurements.
Is it theoretically possible to improve detection of neutrinos with help of quantum coherence?
 
Physics news on Phys.org
  • #2
I'm not sure how quantum coherence can improve detection of neutrinos... Are you talking about a particular paper or article you've read, because I'm not familiar with the concept.

Often, neutrinos are detected by allowing them to collide with some kind of target, then detecting the electrons that they scatter. Measuring the properties of the electron can tell you if it was a neutrino that collided with it.

The thing about neutrinos is that they are very unlikely to interact with any given electron, so even a fairly large target won't stop all the neutrinos. You can say that the efficiency of detection is usually pretty low.
 
  • #3
Are neutrinos interact with electron or with nuclei, where they produce electrons, or both?

Otherwise, I did not find any article, it only seems to me, that something theoretically should exist. I am very sure that practical possibilites are much lower than theoretical. So I ask for theoretical possibilities.

I admit, it is necessary to look how quantum coherence improve other measurements, for instance improved clock, or improved detection of gravitational waves.
 
Last edited:
  • #4
Most of neutrino detectors is based on elastic scattering of neutrinos on electrons. Such electron gets just kicked in direction close to the one of neutrino beam, and then may be detected. But some experiments utilise also other reactions, e.g. [itex]\nu_e+n^0\rightarrow e^-+p^+[/itex] on neutrons in nuclei.

See:
http://en.wikipedia.org/wiki/List_of_neutrino_experiments
 
  • #5
More precise question. If we have a huge bose-einstein condensate, does it is more sensitive to neutrinos, than classical matter?
 
  • #6
read this one:

http://physicsworld.com/cws/article/news/46885
 

Attachments

  • PW_daya1_1608_11.jpg
    PW_daya1_1608_11.jpg
    17.5 KB · Views: 458
Last edited by a moderator:
  • #7
exponent137 said:
If we have a huge bose-einstein condensate, does it is more sensitive to neutrinos, than classical matter?
Oh, yes, certainly!
Especially as both electrons and neutrinos (those interact in most of neutrino detectors) are eager to form such condenstate. Protons and neutrons, which are used in remaining 10% of detectors, are also perfect dough to bake BEC of them.
 
  • #8
xts said:
Oh, yes, certainly!
Especially as both electrons and neutrinos (those interact in most of neutrino detectors) are eager to form such condenstate. Protons and neutrons, which are used in remaining 10% of detectors, are also perfect dough to bake BEC of them.

I think, if we built a huge bose-einstein condensate. Let us say, that number of electrons is such as it is in any now known detector. Does its detection possibility is significantly larger than in now common detectors. I hope for factor at least 100, not only 10%.

Because BEC behaves as one big electron.

I do not have theoretical background for such claim, but BEC can be used as measurement devices.
 
  • #9
I must be disappointing. No BEC behaves like one big electron. Actually, electrons are fermions, so you can't make BEC of them...And even if you could, it woudn't affect their cross section on neutrinos scattering.

Better stay with Cherenkov's radiation in large tanks of water hidden in deep mines...
 
  • #10
Bad information is also information.
(Similarly as with Higgs boson in CERN).
Thank you.

But, BEC is built up also from electrons. Do they not share their energy with BEC?

(BEC=one big electron)=> one big atom or??

I need to re-read about use of BEC at precise measurements. Do anyone know something?
 
Last edited:
  • #11
yoda jedi said:
read this one:

http://physicsworld.com/cws/article/news/46885

Nice link! :smile:
 
  • #12
thanks DrChinese.




.
 
  • #13
exponent137 said:
It is promised that the quantum coherence will help to improve various measurements.
Is it theoretically possible to improve detection of neutrinos with help of quantum coherence?

This whole thread is puzzling because your starting premise here is very suspect.

How exactly is "quantum coherence" (assuming you know what it is) related to neutrino detection? Quantum coherence of WHAT property is involved here? So far, what you are lumping together appears to be word salad without a clear justification. BEC "built up" from electrons? What does that mean?

Zz.
 
  • #14
ZapperZ said:
This whole thread is puzzling because your starting premise here is very suspect.

How exactly is "quantum coherence" (assuming you know what it is) related to neutrino detection? Quantum coherence of WHAT property is involved here? So far, what you are lumping together appears to be word salad without a clear justification. BEC "built up" from electrons? What does that mean?

Zz.
It is only a speculation with not enough knowledge.
BEC is for bosons, not for fermions.
It is necessary to read about BEC.
But a question remains:
How BEC help at improvement of some measurements? Ok, Google will also help.
 
  • #15
exponent137 said:
It is only a speculation with not enough knowledge.

Then you have knowingly violated the PF Rules.

BEC is for bosons, not for fermions.

Don't look at me. YOU were the one who uttered these gems:

Because BEC behaves as one big electron.

But, BEC is built up also from electrons. Do they not share their energy with BEC?

It is necessary to read about BEC.

For whom?

But a question remains:
How BEC help at improvement of some measurements? Ok, Google will also help.

This no longer concerns "coherence" and "neutrino detection". So now, back to the central question. What exactly is the connection between "BEC" and "measurement" that made you think they have anything to do with each other?

Zz.
 
  • #16
It is necessary to read for me. I gave wrong sentences.

But, I gave questions and you question me.

I only gave questions, if it is possible to use coherent state for improved neutrino detection. It is not necessary that this is BEC, it can be any coherent state. It is not necessary that this can be built up in any future, I am interested only theoretically, because of physical principles.Same links of BEC and measurements (I need to read them precisely):
http://first-quantum.net/symposium/2010/pdf/hirano_summerSchool2010.pdf
"precision measurements
gravity, angular velocity,
time, magnetic field, …
"
http://scienceblogs.com/principles/2009/01/ultra-cold_atoms_and_neutrino.php
 
Last edited by a moderator:
  • #17
exponent137 said:
It is necessary to read for me. I gave wrong sentences.

But, I gave questions and you question me.

This is because your question was vague and did not make any sense!

I only gave questions, if it is possible to use coherent state for improved neutrino detection. It is not necessary that this is BEC, it can be any coherent state. It is not necessary that this can be built up in any future, I am interested only theoretically, because of physical principles.

And I asked you why do you think that a coherent state of anything would improve neutrino detection. It appears as if you have no idea how neutrinos are detected currently. How would a coherent state of anything improve, say, the generation of cerenkov radiation that is produced that is the means of neutrino detection that we have currently? THAT is connection that is missing in your question.

If you are not able to supply that information, then the answer to your question is simple: NO.

Will that end this line of question?

Zz.
 
  • #18
What are the De Broglie wavelength of the neutrinos?

I do not see a point in have a detector particle that is larger than the particle you are trying to interact with.
 
  • #19
exponent137 said:
"precision measurements
gravity, angular velocity,
time, magnetic field, …
"
http://scienceblogs.com/principles/2009/01/ultra-cold_atoms_and_neutrino.php

This being possibly a source for the original question: it is a very speculative idea, and really has nothing to do with coherence. It is so speculative - although grounded in "standard" science - that it is really not possible to answer a meaningful question about it.

My advice is to await further developments in this area, should there be any.
 
Last edited by a moderator:
  • #20
edpell said:
What are the De Broglie wavelength of the neutrinos?
Depends on their energy. For those neutrinos we are able to measure (oreder of MeV) pretty small - order of femtometres.

I do not see a point in have a detector particle that is larger than the particle you are trying to interact with.
What do you mean as 'detector particle' and its size? The particle interacting with the one you measure and its wavelength?
Oh yes, there is a point: if you want to measure multiple GeV particles, it could be difficult to use equally energetic particles as targets. And if you want to measure eny electro-weak particles (e.g. neutrinos) the easiest target are just slow electrons in matter.
 

Related to Quantum coherence and neutrino detection

1. What is quantum coherence?

Quantum coherence refers to the property of particles or systems to be in a state of superposition, meaning they can exist in multiple states at the same time. This is a fundamental aspect of quantum mechanics and is essential for many advanced technologies, such as quantum computing and encryption.

2. How is quantum coherence related to neutrino detection?

In neutrino detection, quantum coherence is important because neutrinos can exist in a superposition of different flavors (electron, muon, and tau). This allows them to oscillate between these flavors as they travel, making it difficult to detect them using traditional methods. Understanding and controlling quantum coherence is crucial for accurately detecting and studying neutrinos.

3. What are some challenges in detecting neutrinos using quantum coherence?

One of the main challenges is maintaining quantum coherence over long distances and in complex environments. Neutrinos are very elusive particles and can interact with matter very rarely, making it difficult to detect them without losing the coherence of their oscillation. Additionally, background noise and interference from other particles can disrupt the coherence, making it harder to accurately detect neutrinos.

4. How are scientists using quantum coherence to improve neutrino detection?

Scientists are working on developing new technologies that can better control and maintain quantum coherence for neutrino detection. This includes using advanced materials and techniques, such as superconductors, to reduce interference and increase the sensitivity of detectors. They are also studying the properties of quantum coherence in neutrinos to gain a better understanding of their behavior.

5. What are some potential applications of quantum coherence in neutrino detection?

Quantum coherence has the potential to revolutionize neutrino detection and open up new avenues for research in particle physics and astrophysics. By accurately detecting and studying neutrinos, scientists can gain a better understanding of the fundamental laws of nature and potentially discover new particles and phenomena. Additionally, quantum coherence could also be used in the development of new technologies, such as quantum sensors and communication devices.

Similar threads

  • Quantum Physics
Replies
2
Views
198
  • Quantum Physics
Replies
14
Views
1K
  • Quantum Physics
Replies
11
Views
1K
Replies
3
Views
779
  • Quantum Physics
Replies
9
Views
1K
  • Quantum Physics
Replies
3
Views
387
  • Quantum Physics
Replies
2
Views
1K
  • Quantum Physics
Replies
2
Views
672
  • Quantum Physics
Replies
23
Views
1K
  • Quantum Physics
Replies
5
Views
858
Back
Top