Prove this variation: If a+b ∝ a-b, prove that a^2+b^2 ∝ ab

In summary, the problem states that if two non-zero integers, a and b, are in proportion to each other, then their squares are also in proportion to their product. However, the given proof is flawed as it is not specified that the constant of proportionality, k, must be the same for both equations. Additionally, the definition of proportionality used is tautological and only makes sense when the numbers involved are integers. Therefore, the statement cannot be proven and is not true for all real numbers.
  • #1
RChristenk
49
4
Homework Statement
If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Relevant Equations
Basic fractions and algebra
##a+b \varpropto a-b## means ##a+b = k_1(a-b)##

##(a+b)^2=k_1^2(a-b)^2##

##a^2+b^2+2ab=a^2k_1^2+b^2k_1^2-2abk_1^2##

##2ab(1+k_1^2)=a^2(k_1^2-1)+b^2(k_1^2-1)##

##2ab(k_1^2+1)=(a^2+b^2)(k_1^2-1)##

##a^2+b^2=ab(\dfrac{2k_1^2+2}{k_1^2-1})##

Since ##a^2+b^2 \varpropto ab## means ##a^2+b^2=abk_2##, compared to what I got, I can say ##k_2 = \dfrac{2k_1^2+2}{k_1^2-1}##. Therefore ##a^2+b^2 \varpropto ab## has been proven. Is this a correct? Thanks.
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
##a = 3, b = 1 \ \Rightarrow \ (a+b) = 2(a -b)##

##a^2 + b^2 = 10, \ ab = 3##
 
  • Like
Likes MatinSAR and FactChecker
  • #3
Have you stated the problem exactly and completely? Maybe I'm missing something but it seems false to me.
 
  • Like
Likes MatinSAR
  • #4
FactChecker said:
Have you stated the problem exactly and completely? Maybe I'm missing something but it seems false to me.
It's definitely false, given I provided a counterexample!
 
  • Like
Likes MatinSAR and FactChecker
  • #5
RChristenk said:
Homework Statement: If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Relevant Equations: Basic fractions and algebra

##a+b \varpropto a-b## means ##a+b = k_1(a-b)##
What seems to be missing in the problem statement here is the idea that ##a^2 + b^2## must be shown to be in the same proportion to ab as a + b is to a - b.

IOW, if a + b = k(a - b), then ##a^2 + b^2 = kab##.
 
  • #6
Mark44 said:
What seems to be missing in the problem statement here is the idea that ##a^2 + b^2## must be shown to be in the same proportion to ab as a + b is to a - b.

IOW, if a + b = k(a - b), then ##a^2 + b^2 = kab##.
That doesn't seem possible.
 
  • #7
PeroK said:
That doesn't seem possible.
I agree. My comment was about I believe what the intent of the problem was, taking into account your counterexample. As a very simple example of what I am talking about, show that if ##x \varpropto y## then ##2x \varpropto 2y##. In the two resulting equations, the same constant applies to both.

What the OP is doing is something like this:
Show that ##x \varpropto y \Rightarrow x^2 \varpropto y^2##.
##x \varpropto y \Rightarrow x = ky## for some nonzero k
##x = ky \Rightarrow x^2 = k^2y^2 \Rightarrow x^2 = K y^2 \Rightarrow x^2 \varpropto y^2##

But if x = 4 and y = 2, then x = 2y, but ##x^2 = 16 \ne 8 = 2y^2##.
x and y aren't in the same proportion as ##x^2## and ##y^2##.
 
  • #8
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
 
  • #9
RChristenk said:
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
But this definition of "proportionality" is tautological. Any two quantities ##x## and ##y## are "proportional" (##y=kx##) if one is free to set ##k=y/x##. A proper proportionality requires that ##k## be independent of ##x,y##.
 
  • Like
Likes FactChecker and Mark44
  • #10
RChristenk said:
The question just states if ##a+b \varpropto a-b##, prove that ##a^2+b^2 \varpropto ab##.

I think the constants are different. So ## a+b = k_1(a-b)## and ##a^2+b^2 = k_2ab##.

##\Rightarrow (a+b)^2=k_1^2(a-b)^2##

##\Rightarrow a^2+2ab+b^2=a^2k_1^2-2abk_1^2+b^2k_1^2##

Now using ##a^2+b^2 = k_2ab## and replacing the left side of the above equation, get:

##\Rightarrow k_2ab+2ab=a^2k_1^2-2abk_1^2+b^2k_1^2##

##\Rightarrow k_2ab+2ab+2abk_1^2=(a^2+b^2)k_1^2##

##\Rightarrow ab(k_2+2+2k_1^2)=(a^2+b^2)k_1^2##

##\Rightarrow a^2+b^2 = ab\dfrac{(2k_1^2+k_2+2)}{k_1^2}##

So since ##\dfrac{(2k_1^2+k_2+2)}{k_1^2}## is a new constant of variation, ##a^2+b^2 \varpropto ab## is proven. That's just what I'm thinking.
Apart from when zero is involved, all real numbers are proportional to each other. This question only makes sense if the numbers involved are integers. In this case, if ##a, b \ne zero##, then:
$$a^a + b^2 = (\frac{a^2 + b^2}{ab})ab$$And there is no need to do any calculations. And nothing to prove.

Moreover, ##a + b = k(a - b)## is true for all real numbers ##a, b##. So, there is no "if" involved. It's only when ##a, b## and ##k## are integers that this condition makes sense.
 
  • Like
Likes FactChecker
  • #11
RChristenk said:
Homework Statement: If ##a+b \varpropto a-b ##, prove that ##a^2+b^2 \varpropto ab##
Perhaps ##a## and ##b## are supposed to be variables or parameters? Then ##a+b \varpropto a-b ## implies ##a \varpropto b ## and the result is trivial.

I originally assumed it was an integer equation. The question needs some context.
 
  • Like
Likes FactChecker
  • #12
PeroK said:
Perhaps ##a## and ##b## are supposed to be variables or parameters? Then ##a+b \varpropto a-b ## implies ##a \varpropto b ## and the result is trivial.
IMO, this is the answer that the problem had in mind.
 

Similar threads

  • Precalculus Mathematics Homework Help
Replies
25
Views
933
  • Precalculus Mathematics Homework Help
Replies
6
Views
1K
  • Precalculus Mathematics Homework Help
Replies
4
Views
597
  • Precalculus Mathematics Homework Help
Replies
5
Views
967
Replies
7
Views
679
  • Precalculus Mathematics Homework Help
2
Replies
40
Views
2K
  • Precalculus Mathematics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
Replies
24
Views
1K
  • Precalculus Mathematics Homework Help
Replies
11
Views
1K
  • Precalculus Mathematics Homework Help
Replies
1
Views
768
Back
Top