Prove the nested radicals identity √(n−√(n+√(n−√(n+....

In summary, the nested radicals identity is a mathematical expression involving an infinite number of nested square roots, and it has a unique solution that can be found using the equation x^2 = n. Its purpose is to establish the validity of the expression and has various applications in different fields. It can be proved using mathematical induction, and it has significance in mathematics due to its connections to other concepts and its demonstration of infinite nested radicals. Additionally, it has real-life applications in fields such as geometry, physics, and engineering.
  • #1
lfdahl
Gold Member
MHB
749
0
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]
 
Mathematics news on Phys.org
  • #2
lfdahl said:
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]

$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.
 
Last edited by a moderator:
  • #3
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same
 
  • #4
Prove It said:
$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.

Good job, Prove It! Thankyou for your participation. (Yes)
 
  • #5
kaliprasad said:
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same

What a smart solution!(Cool) Thankyou, kaliprasad for your participation!
 

Related to Prove the nested radicals identity √(n−√(n+√(n−√(n+....

1. What is the nested radicals identity √(n−√(n+√(n−√(n+....)?

The nested radicals identity is a mathematical expression that involves an infinite number of nested square roots. It can be represented as √(n−√(n+√(n−√(n+...), where n is a positive integer. This expression has a unique solution that can be expressed in terms of the positive solution to the equation x^2 = n.

2. What is the purpose of proving the nested radicals identity?

Proving the nested radicals identity is important in mathematics because it helps establish the validity of this expression and provides a solution for it. It also has applications in various fields, such as in calculating the area of a regular n-sided polygon.

3. How can the nested radicals identity be proved?

The nested radicals identity can be proved using mathematical induction, which involves showing that the identity holds true for a base case (usually n = 1) and then showing that if it holds true for any given value of n, it also holds true for n+1. This process is repeated infinitely, proving the identity for all positive integers n.

4. What is the significance of the nested radicals identity in mathematics?

The nested radicals identity is significant in mathematics because it demonstrates the concept of infinite nested radicals and their solutions. It also has connections to other mathematical concepts, such as continued fractions and the golden ratio.

5. Are there any real-life applications of the nested radicals identity?

Yes, the nested radicals identity has real-life applications in fields such as geometry, physics, and engineering. For example, it can be used to calculate the side lengths of regular polygons, the trajectories of objects in motion, and the resistance in electrical circuits.

Similar threads

  • General Math
Replies
1
Views
740
Replies
17
Views
3K
  • General Math
Replies
7
Views
1K
Replies
14
Views
1K
Replies
12
Views
982
Replies
5
Views
1K
Replies
1
Views
649
Replies
3
Views
2K
Replies
2
Views
2K
Back
Top