Creating Energy: Is it Possible?

In summary, the conversation discusses whether energy can be created in the universe or not. Various viewpoints are presented, including the idea that energy cannot be created or destroyed, but only converted from one form to another. It is suggested that the energy in our universe may have come from a quantum fluctuation or from the vacuum. Ultimately, the question of where energy comes from remains unanswered and may never have a definitive answer.
  • #1
darklyzhadowed
7
0
Hello,

I am new to this forum so I'm not even sure if my question belongs here. Anyway, i am aware that the sun has the natural ability to create new kinds ot atoms throught it's gravitational force but can it or anything in this universe create Energy?
 
Physics news on Phys.org
  • #2
My general thoughts on this is that energy can cannot be created from nothing. But, energy can be converted from one form to another, and energy can be converted from mass. Yet, the energy or mass being manipulated must already exist so in reality, no matter what one does, one is merely changing what already exists.
The "new" creation of energy was likely done only once, during the creation of the universe.
 
  • #3
Welcome to the Forums, Michael!

This question is going to get into definitions a little bit. You see, the Sun doesn't actually "create" new kinds of atoms, not by the traditional use of that term, at least. It assembles them by taking already existing atoms and putting them together in new configurations. But the law of conservation, which states that energy can neither be created nor annihilated, uses the word "created" in the more literal sense; to bring something into existence ex nihilo(out of nothing).

In this sense, the answer to your question would be: No, neither stars nor any other known phenominon can create energy. And, since matter is made of energy, it cannot be created or distroyed, either. Matter and energy can only be rearanged; converted from one form to another, assemblerd, dissassembled, etc.
 
  • #4
I always thought that but tell me if you can that if energy cannot be created then how did we come to be? (In nice voice)

I would expect that energy would have to be created somehow - leading back to the big bang no doubt.
 
  • #5
So, what about a random quantum fluxuation? If some system, say a HO, is not in an energy eigenstate (you measure the position , and the position operator does not commute with the Hamiltonian), how can one even talk about conservation of energy?
 
  • #6
Originally posted by turin
So, what about a random quantum fluxuation? If some system, say a HO, is not in an energy eigenstate (you measure the position , and the position operator does not commute with the Hamiltonian), how can one even talk about conservation of energy?
It is true that in general classical physics breaks down on a quantum scale.
I always thought that but tell me if you can that if energy cannot be created then how did we come to be? (In nice voice)
Thats complicated, but essentially, when the universe was created, it had all the energy in it that it has now. It doesn't violate conservation because there is no "before" state with which to compare energy levels. Thats part of the Big Bang theory.
 
  • #7
Energy had to come from somewhere even if it were from Hyper Space or an Alterate Reallity it still must have some from somewhere (STill in nice voice)
 
  • #8
Originally posted by darklyzhadowed
Energy had to come from somewhere ...
Why? Conservation of energy will never be anything more than a model, albeit I must admit that I put more faith in that model than in almost any other.
 
  • #9
darklyzhadowed,

One physicist actually went so far as to describe questions like as existing in something he called "Bubble Land." Questions in Bubble Land simply have no answers right now. They are the questions at which physics and philosophy meet.

We don't really know the answer to your question: where did the energy for our universe come from? It is entirely possible that we will never know the answer to this question, because we cannot escape our own universe to see if there is actually something "outside" it. It is possible that our universe is just a quantum fluctuation, and all its energy has been borrowed (temporarily) from the vacuum, in the same way that virtual photons produce and disappear constantly in a laboratory vacuum.

Don't be dissuaded in your interest in science because we can't yet answer your question -- there are lots of fascinating things we can say about your question, but we may never be able to assign it an answer.

- Warren
 
  • #10
gamma rays passing close to an atomic nucleus can create an electron positron pair. It might therefore follow that energy was not just created from nothing but there becomes from nothing a positive and an equal but opposite negative. If a positron encounteres an electron they anihilate, or become nothing again giving off a photon.
 
  • #11
Originally posted by Piecemaster
gamma rays passing close to an atomic nucleus can create an electron positron pair. It might therefore follow that energy was not just created from nothing but there becomes from nothing a positive and an equal but opposite negative.
I wouldn't say that this demonstrates something coming from nothing, at least not without mentioning that the gamma ray ceases to exist, and so, at the same time, something became nothing.




Originally posted by Piecemaster
If a positron encounteres an electron they anihilate, or become nothing again giving off a photon.
Where did the photon come from?
 
  • #12
Originally posted by turin
So, what about a random quantum fluxuation? If some system, say a HO, is not in an energy eigenstate (you measure the position , and the position operator does not commute with the Hamiltonian), how can one even talk about conservation of energy?

You have to ammend the conservation so that [itex]\Delta E\Delta t \geq \frac{\hbar}{2}[/itex] is remembered. Superposed states aren't a problem as the wavefunction shouldn't be given direct physical signifcance in the conventional interpreation of quantyum measuremnt.
 
  • #13
Originally posted by jcsd
You have to ammend the conservation so that [itex]\Delta E\Delta t \geq \frac{\hbar}{2}[/itex] is remembered.
Are you suggesting that, even in the context of QM, since [itex]\Delta E\Delta t \geq \frac{\hbar}{2}[/itex], then the amount of energy that should be accounted for couldn't have come from a quantum fluxuation, because this energy has been around a lot longer than the [itex]\Delta t[/itex] that this relation allows? I have never been comfortable with this relation. Can you explain where it came from?




Originally posted by jcsd
Superposed states aren't a problem as the wavefunction shouldn't be given direct physical signifcance in the conventional interpreation of quantyum measuremnt.
That is highly subjective. What do you think the conventional interpretation of QM is?
 
  • #14
You just have to take into account that energy obeys an uncertainty relationship and it's only conserved within the limits allowed by this uncertanity relationship. For example you can think of quantum mechanical tunelling as a particle borrowing energy within the limits of uncertainty, but if you were to actually perform a measuremtn on a particle it would never have an energy that violates the conservation of energy. Simlairly if you were to perform a measuremnt on a superposed state your results would never violate the conservation of energy.

The convential interpretaion is the Copenhagen interpretaion suitably adjusted to allow new concepts in quantum measurment such as decoherence.
 
  • #15
Originally posted by jcsd
You just have to take into account that energy obeys an uncertainty relationship and it's only conserved within the limits allowed by this uncertanity relationship.
I guess I just don't understand that uncertainty relationship. Can you explain it to us?

Another thing I just realized. This so called uncertainty relationship seems to suggest that there is no problem with an infinite uncertainty in energy. So, I think that just about puts us where we are now. How certain are we of the amount of energy there is in the universe? I am personally just about infinitely uncertain. But according to the uncertainty relationship provided, that's OK. Because I've lived for some number of years, and my uncertainty of the total energy of the universe is huge, so these two factors are in agreement with this uncertainty relationship. Am I misinterpretting?

I do not at all see what this has to do with energy conservation.




Originally posted by jcsd
For example you can think of quantum mechanical tunelling as a particle borrowing energy within the limits of uncertainty, ...
Why would I think of it that way? The QM wavefunction extends to regions of space where classical particles have zero probablity to exist. I don't understand "borrowing energy within the limits of uncertainty." Can you elaborate this borrowing process?




Originally posted by jcsd
Simlairly if you were to perform a measuremnt on a superposed state your results would never violate the conservation of energy.
I agree, but I didn't mean that there would be a violation of energy conseration. I meant that energy conservation just doesn't make sense to me in the case of a superposition of energy eigenstates.

For simplicity, let's say that a system is in a superposition of 2 energy eigenstates, ψa and ψb, with nondegenerate eigenvalues, Ea and Eb, respectively. Let's say that the superposition is:

ψ = (ψa + ψb)/√2.

If I measure the energies of some number of these identical systems, then half of the time I will find that the energy is Ea and half of the time I will find that the energy is Eb. It's not that this amount of energy was conserved or something. We can't really say anything about the particular amount of energy of the system until we make the measurement. So, that's why I'm saying it doesn't really make sense to me to speak of energy conservation in this case.




Originally posted by jcsd
The convential interpretaion is the Copenhagen interpretaion suitably adjusted to allow new concepts in quantum measurment such as decoherence.
It is my experience, as well, that the Copenhagen interpretation is the conventional one. I don't know anything about decoherence (I don't even know what it means), though, so I guess that disqualifies me from much of the discussion.
 
Last edited:

1. Can energy be created from nothing?

No, according to the First Law of Thermodynamics, energy cannot be created or destroyed. It can only be converted from one form to another.

2. What are some examples of energy conversion?

Examples of energy conversion include the transformation of chemical energy in food into mechanical energy in our bodies, the conversion of sunlight into electrical energy through solar panels, and the conversion of thermal energy into mechanical energy in a car engine.

3. Is it possible to create more energy than is put into the process?

No, this would violate the First Law of Thermodynamics. Energy cannot be created, so the amount of energy output cannot exceed the amount of energy input.

4. Can we create energy from renewable sources?

Yes, renewable energy sources such as wind, solar, hydro, and geothermal energy can be harnessed and converted into usable forms of energy. However, these sources still rely on energy from the sun or Earth's natural processes, so they are not technically "created" from nothing.

5. Are there any current technologies that claim to create energy?

There are many devices and technologies that claim to produce more energy than they consume, but none of them have been scientifically proven to do so. These claims often stem from a misunderstanding of energy conversion processes or a lack of proper testing and verification.

Similar threads

Replies
5
Views
910
  • Atomic and Condensed Matter
Replies
1
Views
838
Replies
6
Views
1K
Replies
19
Views
2K
  • Special and General Relativity
Replies
2
Views
928
Replies
1
Views
357
Replies
7
Views
721
Replies
78
Views
3K
  • Atomic and Condensed Matter
Replies
5
Views
1K
  • Atomic and Condensed Matter
Replies
29
Views
2K
Back
Top