- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,909

Prove that \(\displaystyle 5<\sqrt{5}+\sqrt[3]{5}+\sqrt[4]{5}\).

- Thread starter anemone
- Start date

- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,909

Prove that \(\displaystyle 5<\sqrt{5}+\sqrt[3]{5}+\sqrt[4]{5}\).

Prove that \(\displaystyle 5<\sqrt{5}+\sqrt[3]{5}+\sqrt[4]{5}\).

$$\sqrt{5}+\root 3 \of{5}+\root 4 \of{5} >3\times 5^{13/36}>3\times 5^{1/3}$$

The cube of the right most term is $135>5^3$, so:

$$\sqrt{5}+\root 3 \of{5}+\root 4 \of{5} >3\times 5^{1/3}>5$$

.