- Thread starter
- #1

#### Wild ownz al

##### Member

- Nov 11, 2018

- 30

- Thread starter Wild ownz al
- Start date

- Thread starter
- #1

- Nov 11, 2018

- 30

Let us start from the LHS

$\sin\, A + \cos\,A = p$

square both sides

$(\sin\, A + \cos\,A)^2 = p^2$

or $\sin^2 A + 2 \sin\, A \cos\, A + cos^2 A = p^2$

or $1 +2 \sin\, A \cos\, A = p^2$

or $p^2 - 1 = 2 \sin\, A \cos\, A\cdots(1)$

from $2^{nd}$ condition

$\frac{\sin\, A}{\cos\, A} + \frac{\cos \, A}{\sin \, A} = q$

or $\frac{\sin^2 A+\cos^2 A}{\cos\, A\sin \, A} = q$

or $\frac{1}{\cos\, A\sin \, A} = q\cdots(2)$

multiplying (1) with (2) you get the result