- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,802
Prove that if $a,\,b,\,c,\,d>0$ and $a\le 1,\,a+b\le 5,\,a+b+c\le 14,\,a+b+c+d\le 30$, then $\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\le 10$.
Did I miss something, or is this problem really quite easy to solve? Thankyou for any comment!
Given the conditions:
$a \leq 1 \;\;\wedge \;\;a+b \leq 5\;\; \wedge \;\;a+b+c\leq 14\;\; \wedge \;\; a+b+c+d \leq 30$
which by successive subtractions implies:
$a \leq 1 \;\;\wedge \;\;b \leq 4\;\; \wedge \;\;c\leq 9\;\; \wedge \;\; d \leq 16$
or:
$\sqrt{a} \leq 1 \;\;\wedge \;\;\sqrt{b} \leq 2\;\; \wedge \;\;\sqrt{c}\leq 3\;\; \wedge \;\; \sqrt{d} \leq 4$
Adding the four inequalities yields:
$\sqrt{a} +\sqrt{b} +\sqrt{c}+\sqrt{d} \leq 1+2+3+4 = 10.$
Prove that if $a,\,b,\,c,\,d>0$ and $a\le 1,\,a+b\le 5,\,a+b+c\le 14,\,a+b+c+d\le 30$, then $\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\le 10$.