- Thread starter
- #1

**Proposition:** Let $H$ be a subgroup of a group $G$, and let $N$ be the normalizer of $H$. Prove that:

(a) $H$ is a normal subgroup of $N$

(b) $H$ is a normal subgroup of $G$ if and only if $N$ = $G$

(c) $|H|$ divides $|N|$ and $|N|$ divides $|G|$.

**Proof:**

Part (a):

Suppose $H$ is a subgroup of $G$. Suppose $N$ is a normalizer of $H$, meaning $N(H)$ $=$ $\{g \in G: gHg^{-1}=H\}$. We want to show that $H$ is a normal subgroup of $N$. Note that by definition: $g$ $\in$ $N$ $\leftrightarrow gHg^{-1}=H$. Thus $gHg^{-1}=H$ for every $g$ $\in$ $N$. Hence, $H$ is normal in $N$.

Part (b): Suppose $H$ is a normal subgroup of $G$. Thus $gHg^{-1}=H$ for every $g$ $\in$ $G$. Thus for every $g$ in $G$, we have $gHg^{-1} = H$ $\in$ $N$. So $G$ is a subset of $N$. Since $N$ is a subset of $G$, we must have $N=G$.

Now other direction: Suppose $N=G$. Then, for every $g \in G$ and $g \in N$, we have: $gHg^{-1} = H$. Thus, by definition of normal, $H$ is normal in $G$.

How do I proceed with part c?

Thanks.