Projected Block and Conveyor Belt

In summary, the conversation discusses a homework problem involving a block projected onto a conveyor belt with an initial velocity. The conveyor belt has a constant acceleration and the coefficient of friction between the block and belt is given as μ. The main question is whether the conveyor belt can have an acceleration greater than zero and still have friction acting on it. The expert summarizer explains that a drive mechanism keeps the acceleration of the belt constant regardless of small forces acting on it. The explanation also includes scenarios for different cases where the acceleration of the belt is greater than, equal to, or less than μg, and how that affects the friction between the surfaces. The expert also points out some errors in the explanation, particularly confusing velocity and acceleration in some parts.
  • #1
decentfellow
130
1

Homework Statement


It is a Matching Type Problem(a single entry in a column can be matched with more than one in the other column):-

A block is projected with an initial velocity ##v_{\text{Block}}## on a long conveyor belt moving with velocity ##v_{\text{Belt}}##(at that instant) having constant acceleration ##a_{\text{Belt}}##. Mark the correct option regarding friction after long time (coefficient of friction between the block and belt##=\mu##). If:
Table.PNG


Homework Equations

The Attempt at a Solution


In the first entry in Column-1 it is mentioned that the conveyor belt has no acceleration, I was really confused about it that whether the conveyor belt is allowed to have an acceleration greater than 0, because if it is not so then how could the friction act to accelerate the conveyor belt and deaccelerate the Block as the conveyor belt is constrained to move with zero acceleration.

In all the entries what is troubling me is that whether the conveyor belts are constrained to move with the acceleration indicated only (or in that range only) or can they be acted upon by the friction to change their acceleration for sometime in an attempt to make the block and the conveyor belt move together.
 
Physics news on Phys.org
  • #2
decentfellow said:
whether the conveyor belts are constrained to move with the acceleration indicated
That is how I read it.
 
  • #3
haruspex said:
That is how I read it.
So, if the conveyor belt is constrained to move with the acceleration as given in the entries, then doesn't it mean that the friction can't act as that changes the acceleration of the conveyor belt and block to stop any slipping. In that case all the entries will have zero friction acting b/w the surfaces, and that is not the answer that is given.
 
  • #4
decentfellow said:
So, if the conveyor belt is constrained to move with the acceleration as given in the entries, then doesn't it mean that the friction can't act as that changes the acceleration of the conveyor belt and block to stop any slipping.
Not at all. You have to assume there is a drive mechanism that forces the belt to accelerate at the given rate regardless of any other small forces acting on it.
 
  • #5
haruspex said:
Not at all. You have to assume there is a drive mechanism that forces the belt to accelerate at the given rate regardless of any other small forces acting on it.
Consider the first case-entry in Column-1 in which the conveyor belt doesn't have any acceleration. If there is a driving mechanism that keeps the acceleration constant whatsoever the small forces act on it, then due to ##v_{\text{Block}}\gt v_{\text{Belt}}## kinetic friction acts b/w the conveyor belt and the block to resist slipping which occurs b/w there surfaces. This leads to friction force acting in the forward direction on the conveyor belt hence changing its acceleration (increase in the magnitude) and deaccelerating the block. But, as there is a mechanism present that doesn't let the acceleration of the conveyor belt get affected by the small forces acting on it (considering the kinetic friction to be a small force) then the driving mechanism exerts an equal and opposite force on the conveyor to oppose the force of friction hence keeping the acceleration of the conveyor belt same as that before the block was projected on to the conveyor. In this scenario the block is the only one which is experiencing a change in acceleration (or deaccelration) and acquires a speed that is same as that of the conveyor belt.

Now on to the part that gives the answer that is needed in the book. As the conveyor belt doesn't move with accelerated motion hence after the initial phase (the one that is explained elaborately in the above para) there is no friction force acting b/w the surfaces of the block and the conveyor, because after the initial phase the blocks have already attained the no slipping b/w there surfaces.

Is my explanation correct about this case.

After thinking a lot about the accelerated cases in column-1, the explanation that I came up with was as follows:-

When the block is projected on to the conveyor belt the conveyor belt due to having the drive mechanism doesn't experience any change in its acceleration but the block does experience retardation due to kinetic friction acting b/w the belt and the block and attains the same velocity as that of the conveyor belt. After this phase consider the following three cases:-
  1. If ##a_{\text{Belt}} \gt \mu g## then after a long time the velocity of the conveyor belt would be greater than the block as the acceleration provided by the static friction is less than that which the conveyor belt has (acceleration of conveyor belt) so instead of static friction kinetic friction is acting as there is slipping b/w the surfaces.
  2. If ##a_{\text{Belt}} = \mu g## then after a long time the velocity of the conveyor belt will be same as that of the velocity of the block due to the acceleration provided by the maximum static friction being the same as that provided by the conveyor belt, so as it is possible to have a no slipping scenario in this case if maximum static friction acts b/w the surfaces, so maximum static friction (or limiting friction) acts b/w the block and the conveyor belt.
  3. If ##a_{\text{Belt}} \lt \mu g## then after a long time the velocity of the conveyor belt and the block can be same as the acceleration of the conveyor belt and the acceleration provided by the static friction(which is not the limiting friction in this case) is same, so the friction that acts b/w the surfaces is less than limiting friction.
Is the above explanation correct for the different cases.

The edits made have been italicized.
 
Last edited:
  • #6
decentfellow said:
Is the abore explanation correct for the different cases
I agree with the answers as regards which items from the second column match, but your explanations confuse velocity and acceleration in some places.
Case C is interesting. The question statement does not discriminate kinetic from static friction, so take them to be the same. How would the answer depend on the initial velocity of the block?
 
  • #7
haruspex said:
I agree with the answers as regards which items from the second column match, but your explanations confuse velocity and acceleration in some places.

I have made some edits in post #5 can you please read them and tell me if my explanation is more clear now.
haruspex said:
How would the answer depend on the initial velocity of the block?
Are you referring to the humungous explanation that I had written in the first para. I did it just to examine if something unusual was happening before the first time the no slipping motion is attained, and after doing that I understood that it doesn't really hold any meaning.
 
  • #8
decentfellow said:
  • If ##a_{\text{Belt}} = \mu g ## then after a long time the velocity of the conveyor belt will be same as that of the velocity of the block due to the acceleration provided by the maximum static friction being the same as that provided by the conveyor belt
the acceleration provided by the maximum static friction is that provided by the conveyor belt.
I think you mean that it is the same as the acceleration of the conveyor belt.
 
  • #9
haruspex said:
the acceleration provided by the maximum static friction is that provided by the conveyor belt.
I think you mean that it is the same as the acceleration of the conveyor belt.
Yeah, exactly but your wordings are a lot clear.
 

Related to Projected Block and Conveyor Belt

What is a Projected Block and Conveyor Belt?

A Projected Block and Conveyor Belt is a system used in manufacturing and production to move objects along a conveyor belt. It consists of a flat surface, called the conveyor belt, which is driven by a motor and guided by rollers. The conveyor belt is used to transport objects from one location to another, while the projected blocks are used to lift and carry the objects off of the conveyor belt.

How does the Projected Block and Conveyor Belt work?

The conveyor belt is driven by a motor, which rotates the rollers and moves the belt along. The projected blocks are controlled by sensors and actuators, which allow them to lift and carry objects off of the conveyor belt. The sensors detect the position of the objects and send signals to the actuators, which then move the projected blocks to the desired location.

What are the advantages of using a Projected Block and Conveyor Belt?

There are several advantages to using a Projected Block and Conveyor Belt system. Firstly, it can increase efficiency and productivity by automating the process of moving objects. It also reduces the risk of human error and injury, as the system is controlled by sensors and actuators. Additionally, it can be used to transport heavy or bulky objects that may be difficult for humans to move manually.

What industries use Projected Block and Conveyor Belt systems?

Projected Block and Conveyor Belt systems are commonly used in industries such as manufacturing, logistics, and packaging. They can also be found in airport baggage handling systems and in warehouses for storing and moving goods. Any industry that needs to transport objects from one location to another can benefit from using a Projected Block and Conveyor Belt system.

What are the potential drawbacks of using a Projected Block and Conveyor Belt?

One potential drawback of using a Projected Block and Conveyor Belt system is the initial cost of installation and maintenance. These systems can be expensive and require regular maintenance to ensure they are functioning properly. Additionally, they may not be suitable for handling delicate or irregularly shaped objects. It is important to consider the specific needs of your industry before implementing a Projected Block and Conveyor Belt system.

Similar threads

  • Introductory Physics Homework Help
Replies
8
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
7K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
3
Replies
78
Views
7K
  • Introductory Physics Homework Help
Replies
23
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
5K
  • Introductory Physics Homework Help
Replies
20
Views
3K
  • Introductory Physics Homework Help
Replies
14
Views
5K
  • Introductory Physics Homework Help
Replies
7
Views
7K
  • Introductory Physics Homework Help
Replies
3
Views
11K
Back
Top