- Thread starter
- Admin
- #1
- Jan 26, 2012
- 4,112
Thank you to Chris L T521 for submitting this problem!
Consider a $2\times 2$ matrix
\[A=\begin{bmatrix}a & b \\ c & d\end{bmatrix}.\]
If $\det A = ad-bc \neq 0$, show that
\[A^{-1}=\frac{1}{\det A} \begin{bmatrix}d & -b \\ -c & a\end{bmatrix}.\]
Remember to read the POTW submission guidelines to find out how to submit your answers!
Consider a $2\times 2$ matrix
\[A=\begin{bmatrix}a & b \\ c & d\end{bmatrix}.\]
If $\det A = ad-bc \neq 0$, show that
\[A^{-1}=\frac{1}{\det A} \begin{bmatrix}d & -b \\ -c & a\end{bmatrix}.\]
Remember to read the POTW submission guidelines to find out how to submit your answers!