- Thread starter
- Moderator
- #1

- Jan 26, 2012

- 995

**: If $\mathbf{a}$, $\mathbf{b}$ and $\mathbf{c}$ are constant vectors, $\mathbf{r}$ is the position vector $\langle x,y,z\rangle$ and $E$ is given by the inequalities $0\leq \mathbf{a}\cdot\mathbf{r} \leq \alpha$, $0\leq \mathbf{b}\cdot\mathbf{r} \leq \beta$, $0\leq \mathbf{c}\cdot\mathbf{r} \leq \gamma$, show that**

-----

Problem

-----

Problem

\[\iiint\limits_E (\mathbf{a}\cdot\mathbf{r}) (\mathbf{b}\cdot\mathbf{r}) (\mathbf{c}\cdot\mathbf{r}) \,dV = \frac{(\alpha \beta \gamma)^2}{8|\mathbf{a}\cdot(\mathbf{b} \times\mathbf{c})|}\]

-----

Remember to read the POTW submission guidelines to find out how to submit your answers!