Welcome to our community

Be a part of something great, join today!

Problem of the Week #62 - June 3rd, 2013

Status
Not open for further replies.
  • Thread starter
  • Moderator
  • #1

Chris L T521

Well-known member
Staff member
Jan 26, 2012
995
Thanks again to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: A triangular field is to be enclosed by $p$ feet of fencing so as to maximize the area of the field. Find the lengths of the sides of this triangle.

-----

Hint:
Heron's formula for the area of a triangle with side lengths $x$, $y$ and $z$ is $A=\sqrt{s(s-x)(s-y)(s-z)}$, where $s=\frac{1}{2}(x+y+z)$ is the semiperimeter.


Remember to read the POTW submission guidelines to find out how to submit your answers!
 
  • Thread starter
  • Moderator
  • #2

Chris L T521

Well-known member
Staff member
Jan 26, 2012
995
This week's problem was correctly answered by MarkFL and Sudharaka. You can find Sudharaka's solution below.

\[A=\sqrt{s(s-x)(s-y)(s-z)}~~~~~~~~(1)\]

\[s=\frac{1}{2}(x+y+z)~~~~~~~~~~(2)\]

\[p=x+y+z~~~~~~~~~~(3)\]

Using (1), (2) and (3) we get,

\[A=\frac{1}{4}\,\sqrt{p\,\left( p-2\,x\right) \,\left( p-2\,y\right) \,\left( 2\,x+2\,y-p\right) }\]

Now we shall use the second partial derivative test to find the maximum of \(A\) and the corresponding lengths of the sides.

Differentiating with respect to \(x\) and \(y\) we get,

\[\frac{\partial A}{\partial x}=\frac{p\,\left( y+2\,x-p\right) \,\left( 2\,y-p\right) }{2\,\sqrt{p\,\left( 2\,x-p\right) \,\left( 2\,y-p\right) \,\left( 2\,y+2\,x-p\right) }}\]

\[\frac{\partial A}{\partial y}=\frac{p\,\left( 2\,x-p\right) \,\left( 2\,y+x-p\right) }{2\,\sqrt{p\,\left( 2\,x-p\right) \,\left( 2\,y-p\right) \,\left( 2\,y+2\,x-p\right) }}\]

When \(\frac{\partial A}{\partial x}=0\) we have,

\[p=2y\mbox{ or }p=y+2x~~~~~(4)\]

When \(\frac{\partial A}{\partial y}=0\) we have,

\[p=2x\mbox{ or }p=x+2y~~~~~~~~~(5)\]

By (4) and (5) we get two possibilities,

\[x=y=\frac{p}{2}\mbox{ or }x=y=\frac{p}{3}\]

\(x=y=\frac{p}{2}\Rightarrow z=0\). Hence these lengths do not form a triangle. So the only possibility is,

\[x=y=z=\frac{p}{3}\]

We can also show that,

\[D\left( \frac{p}{3},\frac{p}{3}\right) = A_{xx}\left( \frac{p}{3},\frac{p}{3}\right) A_{yy} \left(\frac{p}{3},\frac{p}{3}\right) - \left( A_{xy}\left(\frac{p}{3},\frac{p}{3}\right) \right)^2=\frac{9}{4}>0\]

and

\[A_{xx}\left(\frac{p}{3},\frac{p}{3}\right)=-\sqrt{3}<0\]

Therefore by the second partial derivative test, \(A\) has a maximum at \(x=y=z=\frac{p}{3}\).
 
Status
Not open for further replies.