# Problem of the Week #44 - January 28th, 2013

Status
Not open for further replies.

#### Chris L T521

##### Well-known member
Staff member
Thanks to those who participated in last week's POTW!! Here's this week's problem!

-----

Problem: Let $J_n=\displaystyle\int\frac{\,dx}{(x^2+1)^n}$. Use integration by parts to prove that
$J_{n+1} = \left(1-\frac{1}{2n}\right)J_n+\left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^n}.$

-----

#### Chris L T521

##### Well-known member
Staff member
This weeks question was correctly answered by BAdhi, MarkFL and Sudharaka. You can find BAdhi's solution below:

It is given that,$$J_n=\int \frac{1}{(x^2+1)^n} \, dx$$
If we consider $\int \frac{1}{(x^2+1)^n} \, dx$ and with integral by parts,
\begin{align*} \int \frac{1}{(x^2+1)^n} \, dx &= \int \frac{d\,x}{dx}\cdot \frac{1}{(x^2+1)^n} \, dx\\ &=x\cdot \frac{1}{(x^2+1)^2}-\int x\cdot \left[\frac{-2nx}{(x^2+1)^{(n+1)}}\right]\,dx\\ &=\frac{x}{(x^2+1)^2}+2n\int \frac{x^2}{(x^2+1)^{(n+1)}} \,dx\\ \frac{1}{2n}J_n&=\left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^2}+\int \frac{x^2}{(x^2+1)^{(n+1)}} \,dx \end{align*}
By adding $-J_n$ to both sides,
\begin{align*} -J_n +\frac{1}{2n}J_n&=\left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^2}+\int \frac{x^2}{(x^2+1)^{(n+1)}} \,dx-J_n\\ \left(\frac{1}{2n}-1\right) J_n & = \left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^2}+\int \frac{x^2}{(x^2+1)^{(n+1)}} -\frac{1}{(x^2+1)^n}\,dx\\ &=\left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^2} + \int \frac{x^2-(x^2+1)}{(x^2+1)^{(n+1)}}\,dx\\ &=\left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^2}-\underbrace{\int \frac{1}{(x^2+1)^{(n+1)}}\,dx}_{J_{(n+1)}}\\ &=\left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^2}-J_{(n+1)} \end{align*}
$$J_{(n+1)}=\left(1-\frac{1}{2n}\right) J_n+\left(\frac{1}{2n}\right) \frac{x}{(x^2+1)^2}$$