Welcome to our community

Be a part of something great, join today!

Problem Of The Week #424 July 6th, 2020

Status
Not open for further replies.
  • Thread starter
  • Admin
  • #1

anemone

MHB POTW Director
Staff member
Feb 14, 2012
3,894
Here is this week's POTW:

-----

Given that $f(x)=ax^3+bx^2+cx+d$ and $|f'(x)|\le 1$ for $0\le x \le 1$. Find the maximum value of $a$.

-----

Remember to read the POTW submission guidelines to find out how to submit your answers!
 
  • Thread starter
  • Admin
  • #2

anemone

MHB POTW Director
Staff member
Feb 14, 2012
3,894
Congratulations to castor28 for his correct solution (Cool) , which you can find below:
We must fit the parabola $y=f'(x)=3x^2+2bx+c$ within the rectangle $[0,1]\times[-1,1]$.

To get the largest value of $a$ (the steepest parabola), we must have $f'(0)=f'(1)=1$, the axis at $x=\dfrac12$, and $f'\left(\dfrac12\right)=-1$:



This gives $f'(x)= 8\left(x-\dfrac12\right)^2-1= 8x^2-8x+1$ and $\bf a=\dfrac83$.

More precisely, the condition will be satisfied for $\lvert a\rvert\le\dfrac83$.
 
Status
Not open for further replies.