Welcome to our community

Be a part of something great, join today!

Problem Of The Week #423 June 29th, 2020

Status
Not open for further replies.
  • Thread starter
  • Admin
  • #1

anemone

MHB POTW Director
Staff member
Feb 14, 2012
3,587
Here is this week's POTW:

-----

Determine $x^2+y^2+z^2+w^2$ if

$\dfrac{x^2}{2^2-1^2}+\dfrac{y^2}{2^2-3^2}+\dfrac{z^2}{2^2-5^2}+\dfrac{w^2}{2^2-7^2}=1,\\\dfrac{x^2}{4^2-1^2}+\dfrac{y^2}{4^2-3^2}+\dfrac{z^2}{4^2-5^2}+\dfrac{w^2}{4^2-7^2}=1,\\\dfrac{x^2}{6^2-1^2}+\dfrac{y^2}{6^2-3^2}+\dfrac{z^2}{6^2-5^2}+\dfrac{w^2}{6^2-7^2}=1,\\\dfrac{x^2}{8^2-1^2}+\dfrac{y^2}{8^2-3^2}+\dfrac{z^2}{8^2-5^2}+\dfrac{w^2}{8^2-7^2}=1$

-----

Remember to read the POTW submission guidelines to find out how to submit your answers!
 
Status
Not open for further replies.