- Thread starter
- Admin
- #1

- Feb 14, 2012

- 3,909

Here is this week's POTW:

-----

$x^3+ax^2+bx+c$ has three distinct real roots, but $(x^2+x+2001)^3+a(x^2+x+2001)^2+b(x^2+x+2001)+c$ has no real roots. Show that $2001^3+a(2001^2)+b(2001)+c>\dfrac{1}{64}$.

-----

Remember to read the POTW submission guidelines to find out how to submit your answers!

-----

$x^3+ax^2+bx+c$ has three distinct real roots, but $(x^2+x+2001)^3+a(x^2+x+2001)^2+b(x^2+x+2001)+c$ has no real roots. Show that $2001^3+a(2001^2)+b(2001)+c>\dfrac{1}{64}$.

-----

Remember to read the POTW submission guidelines to find out how to submit your answers!

Last edited: