Welcome to our community

Be a part of something great, join today!

Problem of the Week #102 - March 10th, 2014

Status
Not open for further replies.
  • Thread starter
  • Moderator
  • #1

Chris L T521

Well-known member
Staff member
Jan 26, 2012
995
Thanks again to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Let $B$ be a solid box with length $L$, width $W$, and height $H$. Let $S$ be the set of all points that are a distance at most $1$ from some point of $B$. Express the volume of $S$ in terms of $L$, $W$, and $H$.

-----

Remember to read the POTW submission guidelines to find out how to submit your answers!
 
  • Thread starter
  • Moderator
  • #2

Chris L T521

Well-known member
Staff member
Jan 26, 2012
995
This week's problem was correctly answered by magneto, MarkFL, Opalg, and Pranav. You can find magneto's solution below.

We will construct the "meta-box" and add the volume.

(a) The volume of the box is $LWH$.

(b) We can extend each of the surface of the box by 1. This creates two blocks of boxes of volume $LW$, $LH$, and $WH$ each. So the total volume would be $2(LW+LH+WH)$.

(c) There are 8 corners each is of $\frac{1}{8}$ of a sphere of radius $1$, so the total volume would be $\frac{4}{3} \pi$.

(d) There are 12 quarter-cylinder, 4 for each dimension of the box. These cylinder's have height of the side of the box, and radius of $1$,
so the total volume is given by $\pi(L+W+H)$.

Therefore, the total volume is $LWH + 2(LW+LH+WH) + \pi (\frac{4}{3} + L + W + H)$.
 
Status
Not open for further replies.