- Thread starter
- #1

Define a finite probabilistic Space (Ω; Pr[ ]) and 2 events A,B⊆ Ω and Pr[A] ≠ Pr

**so that we can verify that**

Pr[A∩B]>=9*Pr[A]*Pr

Pr[A∩B]>=9*Pr[A]*Pr

**> 0. (1)**

___________________________________________

I've been trying it but i have reached this conclusion:

If Pr[A]>0 Pr[A]=Pr[A∩B]/P[B|A]

IF Pr___________________________________________

I've been trying it but i have reached this conclusion:

If Pr[A]>0 Pr[A]=Pr[A∩B]/P[B|A]

IF Pr

**>0 Pr****=Pr[A∩B]/P[A|B]**

Substituting in (1) we have:

P[A|B]*P[A|B]>=9*Pr[A∩B]

I don't know if this help. Can anyone help me please? ThanksSubstituting in (1) we have:

P[A|B]*P[A|B]>=9*Pr[A∩B]

I don't know if this help. Can anyone help me please? Thanks