Probability current density in E.M. field

In summary, the conversation discussed the derivation of the probability current density for a particle in an electromagnetic field. The conversation involved using the Schrödinger equation and its complex conjugate, as well as applying the identity of \nabla \cdot (\phi \mathbf{B}) =\mathbf{B} \cdot \nabla \phi + \phi (\nabla \cdot \mathbf{B}) in order to derive the final equation for the probability current density. However, there were some discrepancies with the final equation and the original equation (1), which was attributed to a factor of 2. The conversation concluded by asking for help in identifying the error in the derivation.
  • #1
aa
20
14
Derive the probability current density for a particle
in an electromagnetic field.

(I previously posted this on StackExchange. Please pardon,
but I have been spending a lot of time on this and if anyone
knows exactly what the subtle trick involved is, I
would really appreciate it.)

http://physics.stackexchange.com/qu...lity-current-density-factors-of-2-discrepancy

Timaeus at StackExchange said that I need to be less
cavalier with moving operators around (since everything is
technically an operator and operators do not commute in
general). Yet after trying to be more rigorous
about preserving order, it still doesn't work for me.

We begin:

[tex]\dfrac{\partial \rho}{\partial t}
=
\dfrac{\partial}{\partial t} (\Psi^* \Psi)
=
\dfrac{\partial \Psi^*}{\partial t} \Psi
+
\Psi^* \dfrac{\partial \Psi}{\partial t}[/tex]

H is, if we substitute in [itex]-i\hbar \nabla[/itex] for [itex]\vec{p}[/itex]:

[tex]H = \frac{1}{2m}(\vec{p} - \frac{q}{c} \mathbf{A}) \cdot
(\vec{p} - \frac{q}{c} \mathbf{A}) + q\phi \\
= \frac{1}{2m}(-i\hbar \nabla - \frac{q}{c} \mathbf{A}) \cdot
(-i\hbar \nabla - \frac{q}{c} \mathbf{A}) + q\phi \\
= \frac{1}{2m}(i\hbar \nabla + \frac{q}{c} \mathbf{A}) \cdot
(i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi[/tex]

Schrödinger equation and its complex conjugate:

[tex]\dfrac {\partial \Psi}{\partial t} = \dfrac{H\Psi}{i\hbar}[/tex]

[tex]\dfrac {\partial \Psi^*}{\partial t} = \dfrac{(H \Psi)^*}{-i\hbar}[/tex]

Substitute in:

[tex]\dfrac {\partial \rho}{\partial t}
=
\dfrac{-1}{i\hbar} [(H\Psi)^* \Psi - \Psi^* (H\Psi)][/tex]

Substitute in H:

[tex]\dfrac {\partial \rho}{\partial t}
= \dfrac{-1}{i\hbar}
\{ ( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})
\cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi]\Psi )^* \Psi \\
- \Psi^*( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})
\cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi] \Psi)
\}[/tex]

Apply complex conjugate:

[tex]\dfrac {\partial \rho}{\partial t}
=\dfrac{-1}{i\hbar}
\{ ( [\frac{1}{2m}(-i\hbar \nabla + \frac{q}{c} \mathbf{A})
\cdot (-i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi]\Psi^* ) \Psi \\
- \Psi^*( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})
\cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi] \Psi)
\}[/tex]

FOIL:

[tex]\dfrac {\partial \rho}{\partial t}=\dfrac{-1}{i\hbar}
\{ ( [\frac{1}{2m}(i\hbar i\hbar \nabla^2 + (-i\hbar) \nabla \cdot (\frac{q}{c} \mathbf{A})
+ (\frac{q}{c} \mathbf{A}) \cdot (-i\hbar) \nabla + \frac{q^2}{c^2} \mathbf{A}^2)
+ q\phi]\Psi^* ) \Psi \\
- \Psi^*( [\frac{1}{2m}(i\hbar i\hbar \nabla^2 + i\hbar \nabla \cdot (\frac{q}{c} \mathbf{A})
+ (\frac{q}{c} \mathbf{A}) \cdot (i\hbar \nabla) + \frac{q^2}{c^2} \mathbf{A}^2)
+ q\phi] \Psi)
\}[/tex]

Multiply everything out:

[tex]\dfrac {\partial \rho}{\partial t}
=\frac{-i\hbar}{2m}(\nabla^2 \Psi^*) \Psi
+ \frac{1}{2m} (\nabla \cdot \frac{q}{c} \mathbf{A}) \Psi^* \Psi
+ \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi^*) \Psi
+ \frac{-1}{i\hbar} \frac{1}{2m} \frac{q^2}{c^2} \mathbf{A}^2 \Psi^* \Psi \\
+ \frac{-1}{i\hbar} \frac{1}{2m} q \phi \Psi^* \Psi \\
+ (\Psi^*) \frac{1}{2m} (i\hbar)(\nabla^2 \Psi)
+ (\Psi^*) \frac{1}{2m} \nabla \cdot (\frac{q}{c} \mathbf{A}) \Psi
+ (\Psi^*) \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi)
+ \frac{1}{i\hbar} (\Psi^*) \frac{1}{2m} \frac{q^2}{c^2} \mathbf{A}^2 \Psi \\
+ \frac{1}{i\hbar} \frac{1}{2m}(\Psi^*)q\phi \Psi
[/tex]

The terms containing [itex]\phi[/itex] and [itex]\frac{q^2}{c^2} \mathbf{A}^2[/itex]
cancel and there's a fact that [itex]\Psi \nabla^2 \Psi^* - \Psi^* \nabla^2 \Psi
= \nabla \cdot(\Psi \nabla \Psi^* - \Psi^* \nabla \Psi)[/itex], so

[tex]\dfrac {\partial \rho}{\partial t}
= \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\
+ \frac{1}{2m} (\nabla \cdot \frac{q}{c} \mathbf{A}) \Psi^* \Psi
+ \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi^*) \Psi
+ (\Psi^*) \frac{1}{2m} \nabla \cdot (\frac{q}{c} \mathbf{A}) \Psi
+ (\Psi^*) \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi)[/tex]

Note that of the 5 terms, the 2nd and 4th are the same, so

(1) [tex]\dfrac {\partial \rho}{\partial t}
= \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\
+ \dfrac{q}{mc} (\nabla \cdot \mathbf{A}) \Psi^* \Psi
+ \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
+ \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)[/tex]

https://en.wikipedia.org/wiki/Probability_current tells us
that the final result should be [itex]\dfrac{\partial \rho}{\partial t}
= - \nabla \cdot \mathbf{j}[/itex] and that

[tex]\mathbf{j} = \dfrac{1}{2m} [(\Psi^* \mathbf{\hat{p}} \Psi
- \Psi \mathbf{\hat{p}} \Psi^* ) - 2 \frac{q}{c} \mathbf{A} |\Psi|^2][/tex]

or using [itex]\mathbf{\hat{p}} = -i\hbar \nabla[/itex],

[tex]\mathbf{j} = \dfrac{1}{2m} [(\Psi^* (-i\hbar \nabla) \Psi
- \Psi (-i\hbar \nabla) \Psi^* ) - 2 \frac{q}{c} \mathbf{A} |\Psi|^2][/tex]

[tex]\mathbf{j} = \dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* ) - \dfrac{1}{2m} 2 \frac{q}{c} \mathbf{A} |\Psi|^2[/tex]

[tex]\mathbf{j} = \dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* ) - \dfrac{q}{mc} \mathbf{A} |\Psi|^2[/tex]

Applying [itex]\dfrac{\partial \rho}{\partial t} = - \nabla \cdot \mathbf{j}[/itex],

[tex]\dfrac{\partial \rho}{\partial t}
= - \nabla \cdot [\dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* ) - \dfrac{q}{mc} \mathbf{A} |\Psi|^2][/tex]

[tex]\dfrac{\partial \rho}{\partial t}
= \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* ) + \dfrac{q}{mc} \nabla \cdot
(\mathbf{A} |\Psi|^2)[/tex]

Apply an identity about [itex]\nabla[/itex] operating on a scalar times a vector
at https://en.wikipedia.org/wiki/Vector_calculus_identities
[itex]\nabla \cdot (\phi \mathbf{B}) =
\mathbf{B} \cdot \nabla \phi +
\phi (\nabla \cdot \mathbf{B})[/itex] (I changed the letters),

[tex]\dfrac{\partial \rho}{\partial t}
= \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* )
+ \dfrac{q}{mc} (\mathbf{A} \cdot \nabla (\Psi^* \Psi)
+ (\Psi^* \Psi) (\nabla \cdot \mathbf{A}))[/tex]

Product rule:

[tex]\dfrac{\partial \rho}{\partial t}
= \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* )
+ \dfrac{q}{mc} (\mathbf{A} \cdot (\Psi^* \nabla \Psi)
+ \mathbf{A} \cdot (\Psi \nabla \Psi^*)
+ (\Psi^* \Psi) (\nabla \cdot \mathbf{A}))[/tex]

[tex]\dfrac{\partial \rho}{\partial t}
= \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* )
+ \dfrac{q}{mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)
+ \dfrac{q}{mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
+ \dfrac{q}{mc} (\Psi^* \Psi) (\nabla \cdot \mathbf{A})[/tex]

Rearrange some terms so that we can compare with equation (1):

[tex]\dfrac{\partial \rho}{\partial t}
= \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
- \Psi \nabla \Psi^* )
+ \dfrac{q}{mc} (\Psi^* \Psi) (\nabla \cdot \mathbf{A})
+ \dfrac{q}{mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
+ \dfrac{q}{mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)[/tex]

Now we're very close to equation (1),

(1) [tex]\dfrac {\partial \rho}{\partial t}
= \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\
+ \dfrac{q}{mc} (\nabla \cdot \mathbf{A}) \Psi^* \Psi
+ \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
+ \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)[/tex]

but are off by some factors of 2.
Do you see the error in my steps?
 
Physics news on Phys.org
  • #2
In your "FOIL" step (see below), think about whether or not the Del operator circled in red should operate on ##\Psi^{*}## as well as ##\mathbf{A}##.
 

Attachments

  • Current density calculation.png
    Current density calculation.png
    5.8 KB · Views: 812
  • #3
It works! "Incorporating the [itex]\Psi[/itex] and [itex]\Psi^*[/itex] first", before doing
the [itex]\nabla[/itex], creates a "6th term", that fills in the missing piece(s).
THANK YOU TSny!
 

Related to Probability current density in E.M. field

What is probability current density in an electromagnetic field?

Probability current density is a concept used in quantum mechanics to describe the flow of probability in a system. In an electromagnetic field, it refers to the rate of change of the probability of finding a particle at a certain position and time.

How is probability current density calculated?

The formula for calculating probability current density is J = (i/2m)(Ψ*∇Ψ - Ψ∇Ψ*), where i is the imaginary unit, m is the mass of the particle, Ψ is the wavefunction, and ∇ is the gradient operator. This formula is derived from the Schrödinger equation.

What does probability current density tell us about a system?

Probability current density provides information about the dynamics of a quantum system. It can tell us how the probability of finding a particle changes over time and how it is affected by the electromagnetic field.

How does probability current density relate to the concept of probability density?

Probability current density and probability density are closely related, as they both describe the probability of finding a particle at a certain position and time. However, probability current density also takes into account the movement of the particle, while probability density only considers its position.

Why is probability current density important in quantum mechanics?

Probability current density is important because it helps us understand the behavior of particles in quantum systems. It can provide insights into the nature of wavefunctions, the effects of electromagnetic fields, and the dynamics of particles. It also plays a crucial role in the development of quantum technologies.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
938
  • Advanced Physics Homework Help
Replies
30
Views
1K
  • Advanced Physics Homework Help
Replies
10
Views
672
  • Advanced Physics Homework Help
Replies
2
Views
159
  • Advanced Physics Homework Help
Replies
1
Views
482
  • Advanced Physics Homework Help
Replies
3
Views
479
Replies
14
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
926
  • Advanced Physics Homework Help
Replies
0
Views
708
  • Advanced Physics Homework Help
Replies
1
Views
878
Back
Top