# Precalculus: What is the value of this sigma notation?

#### ukumure

##### New member
Last edited by a moderator:

#### Greg

##### Perseverance
Staff member
Do you have definitions for $$\displaystyle f$$ and $$\displaystyle g$$?

• ukumure

#### Greg

##### Perseverance
Staff member
Oh! Those definitions are implied... $$\displaystyle f(i)=1.8.$$ and $$\displaystyle g(i)=1.2$$ both suffice as definitions for $$\displaystyle f,\,g$$ if I am not mistaken... After a few basic calculations we may arrive at:

$$\displaystyle \frac{420-90+600}{2}=465$$. Do you see that too?

Hint: use the fact that summation is associative and sum each addend separately with all operations being applied according to BEDMAS. Brackets around the numerator are omitted but in accordance with notational convention they are implied. The string

$$\displaystyle (7g(i)-f(i)+ 12)/2$$ may be more useful to you.

Last edited:
• ukumure

#### ukumure

##### New member
Oh! Those definitions are implied... $$\displaystyle f(i)=1.8.$$ and $$\displaystyle g(i)=1.2$$ both suffice as definitions for $$\displaystyle f,\,g$$ if I am not mistaken... After a few basic calculations we may arrive at:

$$\displaystyle \frac{420-90+600}{2}=465$$. Do you see that too?

Hint: use the fact that summation is associative and sum each addend separately with all operations being applied according to BEDMAS. Brackets around the numerator are omitted but in accordance with notational convention they are implied. The string

$$\displaystyle (7g(i)-f(i)+ 12)/2$$ may be more useful to you.
Thank you so much for helping me!   This means a lot to me! Thank you!

• Greg

#### skeeter

##### Well-known member
MHB Math Helper
Oh! Those definitions are implied... $$\displaystyle f(i)=1.8.$$ and $$\displaystyle g(i)=1.2$$ both suffice as definitions for $$\displaystyle f,\,g$$ ...
If the assumption that both $f(i)$ and $g(i)$ are constants is correct, wouldn’t

$g(i) = \dfrac{60}{21}$ ?

• ukumure and Greg

#### Greg

##### Perseverance
Staff member
If the assumption that both $f(i)$ and $g(i)$ are constants is correct, wouldn’t

$g(i) = \dfrac{60}{21}$ ?
Yes, I agree. My error was missing $$\displaystyle i$$ = 30 and assuming $$\displaystyle i$$ = 1 .

• ukumure

#### Opalg

##### MHB Oldtimer
Staff member
If the assumption that both $f(i)$ and $g(i)$ are constants is correct, wouldn’t

$g(i) = \dfrac{60}{21}$ ?
There is no need to assume that $f(i)$ and $g(i)$ are constants. You just need to use the fact that $$\sum_{i=1}^{50} \frac{7 g(i)-f(i)+12}2 = \frac12\sum_{i=1}^{50} (7 g(i)-f(i)+12) = \frac12\left(7\sum_{i=1}^{50}g(i) - \sum_{i=1}^{50}f(i) + \sum_{i=1}^{50}12\right) = \frac12(7*60 - 90 + 600) = 465.$$

• ukumure

#### skeeter

##### Well-known member
MHB Math Helper
There is no need to assume that $f(i)$ and $g(i)$ are constants. You just need to use the fact that $$\sum_{i=1}^{50} \frac{7 g(i)-f(i)+12}2 = \frac12\sum_{i=1}^{50} (7 g(i)-f(i)+12) = \frac12\left(7\sum_{i=1}^{50}g(i) - \sum_{i=1}^{50}f(i) + \sum_{i=1}^{50}12\right) = \frac12(7*60 - 90 + 600) = 465.$$
take another look at the indices for g(i) in the original post ...

• • ukumure and Opalg

#### Opalg

##### MHB Oldtimer
Staff member
take another look at the indices for g(i) in the original post ...
I should have looked more closely! As stated, the problem can have no definite solution.

• ukumure and skeeter

#### ukumure

##### New member
take another look at the indices for g(i) in the original post ...
I got confused at the problem, especially the given i=30. But the instructor told me it was a typographical error. Thank you so much for your help! <3

• Opalg and Greg