- Thread starter
- #1
- Feb 29, 2012
- 342
I'm having trouble with the following question:
Construct a polynomial $q(x) \neq 0$ with integer coefficients which has no rational roots but is such that for any prime $p$ we can solve the congruence $q(x) \equiv 0 \mod p$ in the integers.
Any hints on how to even start the problem will be strongly appreciated.
Thanks.
Construct a polynomial $q(x) \neq 0$ with integer coefficients which has no rational roots but is such that for any prime $p$ we can solve the congruence $q(x) \equiv 0 \mod p$ in the integers.
Any hints on how to even start the problem will be strongly appreciated.
