Welcome to our community

Be a part of something great, join today!

[SOLVED] Polynomial types


Well-known member
Jan 31, 2012

Decide whether the function is a polynomial function, If so, states its degree, type, and leading coefficient.

well, I presume it is a polynomial since it the sum of powers in the variable x. Its degree is 2 since that is highest power, but I don't know its type, since it is not quadratic or cubic. and has a vertical asymptote. and of course the leading coefficient is 2

couldn't find the answer in the book?
Last edited:


Well-known member
MHB Math Helper
Jan 26, 2012
Polynomials cannot have negative powers of $x$, so it's not a polynomial. Polynomials are continuous everywhere, differentiable everywhere, are well-behaved and have no asymptotes.

See the Wikipedia article, it says "non-negative integer exponents" :)


Staff member
Jan 26, 2012
One of the criteria for an expression to be a polynomial is that the exponents must be non-negative integers. So given that piece of information, what do you say the answer is?

Here's a site that goes over some examples.