- Thread starter
- Admin
- #1
- Feb 14, 2012
- 3,963
Show that the equation $8x^4-16x^3+16x^2-8x+p=0$ has at least one non-real root for every real number $p$ and find the sum of all the non-real roots of the equation.
For $p \le \dfrac{3}{2}$: | For $p>\dfrac{3}{2}$: |
If we want $n_1=\dfrac{-1+\sqrt{2(2-p)}}{4}>0$, this is true when $p \le\dfrac{3}{2}$. That means, the original equation $8x^4-16x^3+16x^2-8x+p=0$ has 2 real roots and 2 non-real roots and its non-real roots take the form $x=m+\dfrac{1}{2}$, where $m=\sqrt{n}=\sqrt{\text{negative value}}=ai$. The sum of the 2 non-real roots therefore is $\left(ai+\dfrac{1}{2} \right)+\left(-ai+\dfrac{1}{2} \right)=1$. | We will get $n_1=\dfrac{-1+\sqrt{2(2-p)}}{4}<0$. That means, the original equation $8x^4-16x^3+16x^2-8x+p=0$ has all 4 non-real roots and its non-real roots take the form $x=m_1+\dfrac{1}{2}$ and $x=m_2+\dfrac{1}{2}$, where $m_1=\sqrt{n}=\sqrt{\text{negative value}}=ci$ and $m_2=\sqrt{n}=\sqrt{\text{negative value}}=di$ The sum of the 4 non-real roots therefore is $\left(ci+\dfrac{1}{2} \right)+\left(-ci+\dfrac{1}{2} \right)+\left(di+\dfrac{1}{2} \right)+\left(-di+\dfrac{1}{2} \right)=2$. |