- Thread starter
- #1

there vertices and having Exactly $2$ sides common with the polygon

My solution:

first we will take $2$ sides common is $=10$ ways now if we take two sides as $A_{1}A_{2}$ and $A_{1}A_{3}$ then we

will not take vertex $A_{4}$ and $A_{10}$ So we will choose $1$ vertes from $5$ vertices which can be done by

$\displaystyle \binom{5}{1}$ ways So Total No. of ways in which $2$ sides common is $=10 \times \displaystyle\binom{5}{1} =50$ but answer given

is $=75$.

But I did not understand it. Would anyone like to explain me where i am wrong

Thanks