Nuclear Power Plant Spent Fuel Types

In summary, nuclear power plants produce spent fuel, which is a type of radioactive waste that is no longer usable for energy production. There are several types of spent fuel, including high-level waste, which is highly radioactive and requires long-term storage, and low-level waste, which is less radioactive and can be safely disposed of in a specialized facility. The management and disposal of spent nuclear fuel is a complex and highly regulated process due to its potential health and environmental risks.
  • #1
average guy
119
0
nuclear engineers
it does seem like it requires types of
current nuclear power plants.
so what are they and what are
the spent fuels?

Have A Nice Day!
 
Engineering news on Phys.org
  • #2
Light water reactors - 359 in operation in the world, of which 104 are in the US.
http://www.iaea.org/NuclearPower/WCR/LWR/


The USA has 104 nuclear power reactors - 69 pressurized water reactors (PWRs) with combined capacity of about 67 GWe and 35 boiling water reactors (BWRs) with combined capacity of about 34 GWe.
http://www.world-nuclear.org/info/inf41.html

France has 58 nuclear reactors operated by Electricite de France (EdF), with total capacity of over 63 GWe, supplying 421 billion kWh per year of electricity (net), 78% of the total generated there in 2011.
http://www.world-nuclear.org/info/inf40.html

Russia has 33 reactors: 1 FBR, 11 RBMKs, 17 VVERs, and 4 small graphite moderated reactors.
http://www.world-nuclear.org/info/inf45.html

The Republic of Korea (S. Korea) has 4 CANDUs and 17 PWRs.
http://www.world-nuclear.org/info/inf81.html

Germany has 17 operating nuclear power reactors. Six units are boiling water reactors (BWR), 11 are pressurised water reactors (PWR). All were built by Siemens-KWU.
http://www.world-nuclear.org/info/inf43.html

The UK has a fleet of gas-cooled (CO2) reactors, 3 Magnox and 14 AGRs. There is one PWR in the UK.
http://www.world-nuclear.org/info/inf84.html

Sweden has 10 LWRs - 7 BWRs (2 BWR units were shutdown, one in 1999 and the other in 2005) and 3 PWRs
http://www.world-nuclear.org/info/inf42.html

Spain has 8 LWRs - 2 BWRs and 6 PWRs
http://www.world-nuclear.org/info/inf85.html

Switzerland has 5 LWRs - 2 BWRs and 3 PWRs.
http://www.world-nuclear.org/info/inf86.html

There are a handful of liquid metal (fast) reactors.

More general information - http://www.world-nuclear.org/info/
http://www.world-nuclear.org/info/reactors.html


Fuel is spent when the fissile inventory is depleted and fission products have accumulated to the point where is it not economical to continue operation, or the fuel has reached it's technical (licensed) limits, and the fuel is discharged.
 
Last edited by a moderator:
  • #3
asto nuke
this was on computer bright and early.
you certainly had your coffee.
that is a FIRST CLASS answer.
thank you sir.
i will respond soon.

Have A Nice Day!
 
  • #4
Astronuc's answer was excellent. This is my first post and I hope that I have it in the right place. I believe that this question is related, so I will ask it here. The mods can certainly move it if I have posted in the wrong place.

A friend asked me about a statement he read that bombs could be made from spent fuel from most reactors.

1) Is this because the the amount of the fissionable plutonium, while lower than optimum, is still high enough to build a bomb with sufficient effort?

2) Does anyone know of a source that links the spent fuels results to the type of reactor used?

Thanks.
 
  • #5
Saurian said:
Astronuc's answer was excellent. This is my first post and I hope that I have it in the right place. I believe that this question is related, so I will ask it here. The mods can certainly move it if I have posted in the wrong place.

A friend asked me about a statement he read that bombs could be made from spent fuel from most reactors.

1) Is this because the the amount of the fissionable plutonium, while lower than optimum, is still high enough to build a bomb with sufficient effort?

2) Does anyone know of a source that links the spent fuels results to the type of reactor used?

Thanks.

(The plutonium isotopic composition of used MOX fuel at 45 GWd/tU burnup is about 37% Pu-239, 32% Pu-240, 16% Pu-241, 12% Pu-242 and 4% Pu-238.)
Ref: http://world-nuclear.org/info/inf29.html

WG-Pu has better than 90% Pu-239.

With respect to 2), the fuel geometric characteristics are general specific to a reactor design. In PWRs (including VVERs), the control element geometry is fixed, so each unit is restricted to a given geometric (lattice) design, unless the upper head and control guide structures are replaced.

BWRs have more flexibility, and we've seen an evolution from 7x7 to 8x8 to 9x9 and 10x10 lattices over the past 40 years.

CANDUs have similar flexibility and more advanced fuel element designs use more fuel rods in the same lateral envelope.

AGRs are pretty much fixed in what they use.

The discharge burnup depends on energy density, batch fraction and cycle length. Discharge burnups for LWRs are typically in the range of 45-55 GWd/tHM, with BWRs lagging PWRs. CANDUs use much lower enrichment, so their discharge burnup is much less.
 

Related to Nuclear Power Plant Spent Fuel Types

1. What is spent nuclear fuel?

Spent nuclear fuel is the radioactive byproduct of nuclear power plants, consisting of fuel rods that have been used in the reactor for a certain amount of time and are no longer able to sustain a chain reaction.

2. How is spent nuclear fuel stored?

Spent nuclear fuel is typically stored in large pools of water at the power plant site for several years before being transferred to dry storage casks. This allows the fuel to cool and reduces its radioactivity. Alternatively, some countries have implemented reprocessing methods to extract usable materials from the spent fuel.

3. What types of spent nuclear fuel are there?

The most common types of spent nuclear fuel are uranium oxide and mixed oxide (MOX), which consists of a blend of uranium and plutonium oxides. Other types include thorium-based fuels and advanced fuel designs such as metallic and ceramic fuels.

4. How long does spent nuclear fuel remain radioactive?

Spent nuclear fuel remains radioactive for thousands of years, with the level of radioactivity decreasing over time. It is important to properly store and manage spent fuel to prevent any potential hazards to human health and the environment.

5. What are the potential risks associated with spent nuclear fuel?

The main risk associated with spent nuclear fuel is the potential for radiation exposure to humans and the environment. Spent fuel must be carefully managed and stored to prevent any leaks or accidents that could release radioactive materials. There is also concern about the long-term storage of spent fuel and its potential impact on future generations.

Similar threads

  • Nuclear Engineering
2
Replies
41
Views
3K
  • Nuclear Engineering
Replies
5
Views
1K
  • Nuclear Engineering
Replies
1
Views
1K
Replies
20
Views
2K
Replies
46
Views
3K
  • Nuclear Engineering
Replies
29
Views
4K
Replies
2
Views
1K
  • Nuclear Engineering
Replies
0
Views
654
Replies
5
Views
860
Replies
45
Views
2K
Back
Top