- Thread starter
- #1

- Jun 22, 2012

- 2,918

I am reading Dummit and Foote Chapter 15, Section 15.1: Noetherian Rings and Affine Algebraic Sets.

Exercise 10 reads as follows:

--------------------------------------------------------------------------------------------------------------------

Prove that the subring: [TEX] k[x, x^2y, x^3y^2, ... ... ... \ , x^iy^{i-1} ... ... ] [/TEX] of the polynomial ring k[x,y] is not a Noetherian ring and hence not a finitely generated k-algebra.

-----------------------------------------------------------------------------------------------------------------------

Can someone please help me get a start on this exercise.

Peter

[Note: This has also been posted on MHF]

Exercise 10 reads as follows:

--------------------------------------------------------------------------------------------------------------------

Prove that the subring: [TEX] k[x, x^2y, x^3y^2, ... ... ... \ , x^iy^{i-1} ... ... ] [/TEX] of the polynomial ring k[x,y] is not a Noetherian ring and hence not a finitely generated k-algebra.

-----------------------------------------------------------------------------------------------------------------------

Can someone please help me get a start on this exercise.

Peter

[Note: This has also been posted on MHF]

Last edited: