Muhammed's question via email about solving a DE using Fourier Transforms

In summary, the inverse Fourier Transform of $\displaystyle \begin{align*} \frac{1}{ \omega ^2 - 7\mathrm{i} \, \omega - 10 } \end{align*}$ is $\displaystyle \begin{align*} \frac{1}{3}\mathrm{e}^{-5t}\,\mathrm{H}(t) - \frac{1}{3}\mathrm{e}^{-2t}\,\mathrm{H}(t) \end{align*}$, the inverse Fourier Transform of $\displaystyle \begin{align*} \frac{\mathrm{e}^{-3\mathrm{i}\,\omega}}{\omega ^2 - 7\
  • #1
Prove It
Gold Member
MHB
1,465
24
a) Find the Inverse Fourier Transform of $\displaystyle \begin{align*} \frac{1}{ \omega ^2 - 7\mathrm{i} \, \omega - 10 } \end{align*}$.

b) Hence find the Inverse Fourier Transform of $\displaystyle \begin{align*} \frac{\mathrm{e}^{-3\mathrm{i}\,\omega}}{\omega ^2 - 7\mathrm{i}\,\omega - 10} \end{align*}$.

c) Using these results, solve the following Differential Equation:

$\displaystyle \begin{align*} \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 7\,\frac{\mathrm{d}y}{\mathrm{d}t} + 10y = \delta \left( t - 3 \right) \end{align*}$

a) Start by writing $\displaystyle \begin{align*} \frac{ 1}{ \omega ^2 - 7\mathrm{i}\,\omega - 10 } = \frac{1}{ \omega ^2 - 7\mathrm{i} \,\omega + 10\mathrm{i}^2 } = \frac{1}{ \left( \omega - 5\mathrm{i} \right) \left( \omega - 2\mathrm{i} \right) } \end{align*}$

Now applying partial fractions:

$\displaystyle \begin{align*} \frac{A}{\omega - 5\mathrm{i}} + \frac{B}{ \omega - 2\mathrm{i} } &\equiv \frac{1}{ \left( \omega - 5\mathrm{i} \right) \left( \omega - 2\mathrm{i} \right) } \\ A \left( \omega - 2\mathrm{i} \right) + B \left( \omega - 5\mathrm{i} \right) &\equiv 1 \end{align*}$

Let $\displaystyle \begin{align*} \omega = 5\mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} 3\mathrm{i}\,A = 1 \implies A = -\frac{\mathrm{i}}{3} \end{align*}$ and let $\displaystyle \begin{align*} \omega = 2\mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} -3\mathrm{i}\,B = 1 \implies B = \frac{\mathrm{i}}{3} \end{align*}$, giving

$\displaystyle \begin{align*} -\frac{\mathrm{i}}{3} \left( \frac{1}{\omega - 5\mathrm{i}} \right) + \frac{\mathrm{i}}{3} \left( \frac{1}{\omega - 2\mathrm{i}} \right) \equiv \frac{1}{ \left( \omega - 5\mathrm{i} \right) \left( \omega - 2\mathrm{i} \right) } \end{align*}$

Now some rearrangement to apply the rule $\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{1}{ a + \mathrm{i}\,\omega} \right\} = \mathrm{e}^{-a\,t}\,\mathrm{H}(t) \end{align*}$...

$\displaystyle \begin{align*} -\frac{\mathrm{i}}{3} \left( \frac{1}{\omega - 5\mathrm{i}} \right) + \frac{\mathrm{i}}{3} \left( \frac{1}{\omega - 2\mathrm{i}} \right) &= -\frac{\mathrm{i}}{3} \left( \frac{1}{\omega - 5\mathrm{i}} \right) \frac{\mathrm{i}}{\mathrm{i}} + \frac{\mathrm{i}}{3} \left( \frac{1}{\omega - 2\mathrm{i}} \right) \frac{\mathrm{i}}{\mathrm{i}} \\ &= \frac{1}{3} \left( \frac{1}{5 + \mathrm{i}\,\omega} \right) - \frac{1}{3} \left( \frac{1}{2 + \mathrm{i}\,\omega} \right) \end{align*}$

and so

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{1}{\omega ^2 - 7\mathrm{i}\,\omega - 10 } \right\} &= \mathcal{ F}^{-1} \left\{ \frac{1}{3} \left( \frac{1}{5 + \mathrm{i}\,\omega } \right) - \frac{1}{3} \left( \frac{1}{2 + \mathrm{i}\,\omega } \right) \right\} \\ &= \frac{1}{3}\mathrm{e}^{-5t}\,\mathrm{H}(t) - \frac{1}{3}\mathrm{e}^{-2t}\,\mathrm{H}(t) \end{align*}$
b) Applying the second shift theorem: $\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \mathrm{e}^{-\mathrm{i}\,\omega\,u } F \left( \omega \right) \right\} = f \left( t - u \right) \end{align*}$, we can see that

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{ \mathrm{e}^{-3\mathrm{i}\,\omega} }{ \omega ^2 - 7\mathrm{i} \,\omega - 10 } \right\} &= \mathcal{F}^{-1} \left\{ \mathrm{e}^{-3\mathrm{i}\,\omega } \left( \frac{1}{ \omega ^2 - 7\mathrm{i}\,\omega - 10 } \right) \right\} \\ &= \frac{1}{3} \mathrm{e}^{-5 \left( t - 3 \right) }\,\mathrm{H} \left( t - 3 \right) - \frac{1}{3} \mathrm{e}^{-2 \left( t - 3 \right) } \, \mathrm{H} \left( t - 3 \right) \end{align*}$
c) Here we need to use the Operational Theorem $\displaystyle \begin{align*} \mathcal{ F} \left\{ \frac{\mathrm{d}^n f}{\mathrm{d}t^n} \right\} = \left( \mathrm{i}\,\omega \right) ^n F \left( \omega \right) \end{align*}$ and the rule $\displaystyle \begin{align*} \mathcal{F} \left\{ \delta \left( t - T \right) \right\} = \mathrm{e}^{-\mathrm{i}\,T\,\omega } \end{align*}$. Taking the Fourier Transform of both sides gives:

$\displaystyle \begin{align*} \mathcal{F} \left\{ \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 7\,\frac{\mathrm{d}y}{\mathrm{d}t} + 10y \right\} &= \mathcal{F} \left\{ \delta \left( t - 3 \right) \right\} \\ \left( \mathrm{i}\,\omega \right) ^2 \, Y \left( \omega \right) + 7 \left( \mathrm{i} \,\omega \right) Y \left( \omega \right) + 10 \, Y \left( \omega \right) &= \mathrm{e}^{-3\mathrm{i}\,\omega } \\ -\omega ^2 \, Y \left( \omega \right) + 7\mathrm{i}\,\omega \, Y \left( \omega \right) + 10 \, Y \left( \omega \right) &= \mathrm{e}^{-3\mathrm{i}\,\omega } \\ \left( -\omega ^2 + 7\mathrm{i}\,\omega + 10 \right) Y \left( \omega \right) &= \mathrm{e}^{-3\mathrm{i}\,\omega } \\ - \left( \omega ^2 - 7\mathrm{i}\,\omega - 10 \right) Y\left( \omega \right) &= \mathrm{e}^{-3\mathrm{i}\,\omega } \\ Y \left( \omega \right) &= - \frac{\mathrm{e}^{-3\mathrm{i}\,\omega }}{\omega ^2 - 7\mathrm{i}\,\omega - 10 } \\ y(t) &= \mathcal{F}^{-1} \left\{ -\frac{\mathrm{e}^{-3\mathrm{i}\,\omega}}{\omega ^2 - 7\mathrm{i}\,\omega - 10 } \right\} \\ &= -\frac{1}{3}\mathrm{e}^{-5 \left( t - 3 \right) }\,\mathrm{H} \left( t - 3 \right) + \frac{1}{3}\mathrm{e}^{-2 \left( t - 3 \right) }\,\mathrm{H} \left( t - 3 \right) \end{align*}$
 
Mathematics news on Phys.org
  • #2


Therefore, the solution to the differential equation is $\displaystyle \begin{align*} y(t) = -\frac{1}{3}\mathrm{e}^{-5 \left( t - 3 \right) }\,\mathrm{H} \left( t - 3 \right) + \frac{1}{3}\mathrm{e}^{-2 \left( t - 3 \right) }\,\mathrm{H} \left( t - 3 \right) \end{align*}$.
 

Related to Muhammed's question via email about solving a DE using Fourier Transforms

1. How can Fourier Transforms be used to solve differential equations?

The Fourier Transform is a mathematical tool that can be used to decompose a function into its frequency components. This allows us to transform a differential equation into an algebraic equation, which can then be solved using standard techniques.

2. What types of differential equations can be solved using Fourier Transforms?

Fourier Transforms can be used to solve linear, constant coefficient differential equations. These include ordinary differential equations as well as partial differential equations.

3. Are there any drawbacks to using Fourier Transforms to solve differential equations?

One potential drawback is that the Fourier Transform method can only be used for certain types of differential equations, as mentioned above. Additionally, the process of taking the Fourier Transform and then inverting it to obtain the solution can be complex and time-consuming.

4. Are there any other methods for solving differential equations?

Yes, there are many other methods for solving differential equations, such as separation of variables, substitution, and numerical methods. The choice of method depends on the specific type of differential equation and the desired level of accuracy.

5. Can Fourier Transforms be applied to real-world problems?

Yes, Fourier Transforms have many real-world applications. They are commonly used in engineering, physics, and signal processing to analyze and solve problems involving waves and oscillations. They can also be used to model and solve problems in finance, biology, and other fields.

Similar threads

Replies
1
Views
9K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
0
Views
9K
Replies
1
Views
11K
Replies
1
Views
9K
Replies
1
Views
10K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
4
Views
10K
Back
Top