- Thread starter
- #1
- Jan 31, 2012
- 253
Here's an eclectic bunch.
1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $
2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio
3) $ \displaystyle \int_{0}^{\infty} \sin \left(x^{2} + \frac{1}{x^{2}} \right) \ dx $
4) $ \displaystyle \int_{0}^{\infty} e^{-x} \text{erf}(\sqrt{x}) \ dx $ where $\text{erf}(x)$ is the error function
5) $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx $
1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $
2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio
3) $ \displaystyle \int_{0}^{\infty} \sin \left(x^{2} + \frac{1}{x^{2}} \right) \ dx $
4) $ \displaystyle \int_{0}^{\infty} e^{-x} \text{erf}(\sqrt{x}) \ dx $ where $\text{erf}(x)$ is the error function
5) $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx $