Moment of inertia of a thin, square plate

  • #1
simphys
322
45
Homework Statement
the moment of inertia about an axis through the center of and perpendicular to a uniform, thin square plate. mass M and dimension L x L.
Relevant Equations
d
I don't really understand what the 2 integrals (dx and dxdy) for I_x represent. Could I get some explanation here please? Thanks in advance.
1692111880738.png
 
Physics news on Phys.org
  • #2
The second line in the derivation of ##I_x## has one ##dx## too many. Is that what bothers you?
 
  • Like
Likes simphys
  • #3
Also, the second line is missing the ##r^2## and the limits of integration for ##x## are not correct. Keep in mind that this integral represents the moment of inertia about the x-axis, and the x-axis lies in the plane of the thin plate. Think about how to express ##r^2## in terms of ##x## and/or ##y##.
 
  • Like
Likes simphys
  • #4
If you put in the correct $$r^2=x^2+ y^2$$ in the second line then you see that the x and y integrals give you the "perpendicular axis theorem" without issue. Please redo this.
 
  • Like
Likes simphys
  • #5
TSny said:
Also, the second line is missing the ##r^2## and the limits of integration for ##x## are not correct. Keep in mind that this integral represents the moment of inertia about the x-axis, and the x-axis lies in the plane of the thin plate. Think about how to express ##r^2## in terms of ##x## and/or ##y##.
Yep, that is what I did I expressed in terms of y^2 and then went ahead with that. But I just didn't understand how this solution came about basically.
 
  • #6
hutchphd said:
If you put in the correct $$r^2=x^2+ y^2$$ in the second line then you see that the x and y integrals give you the "perpendicular axis theorem" without issue. Please redo this.
this is the solution. not mine :)
 
  • #7
So where is your attempt? How are we to help?
 
  • Like
Likes simphys
  • #8
hutchphd said:
So where is your attempt? How are we to help?
well.. that is exactly what I don't understand..
I didn't understand why the solution has used two integrals in such a way.. I haven't used a volume integral or smtn. I did differently by using a mass element and summing over that with one definite integral.
 
  • #9
One must sum each mass element (mass density times volume element) over the entire volume of the object and scaled by the square of the distance to the chosen axis . The world is three dimensional and so is the integral. Show us your work.
 

Similar threads

  • Introductory Physics Homework Help
Replies
2
Views
676
  • Introductory Physics Homework Help
Replies
3
Views
837
  • Introductory Physics Homework Help
Replies
16
Views
1K
Replies
25
Views
526
  • Introductory Physics Homework Help
Replies
13
Views
1K
  • Introductory Physics Homework Help
2
Replies
52
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
898
  • Introductory Physics Homework Help
Replies
28
Views
572
  • Introductory Physics Homework Help
Replies
27
Views
3K
  • Introductory Physics Homework Help
Replies
8
Views
8K
Back
Top