- Thread starter
- #1

I need some help with this question, it is not very clear and I find it hard to translate from text to math...

Some company has found that x units of it's product can be sold for p$ a unit when x=1000-p. The cost of producing x units in a day is C(X)=3000+20x.

A. Found the income function R(X) and the profit function P(X).

B. Assuming that the company can produce 500 units a day, determine how many units they need to produce and sell for maximal profit.

C. What is the maximal profit ? What is the price of a unit that leads to a maximal profit ?

Thanks...