- Thread starter
- Banned
- #1
The method here is that you look for a solution of the form $y=e^w$, where $w$ is some function of $x$ that has to be determined. Then $y' = w'e^w$, $y'' = (w'' + w'^2)e^w$, and the equation $y''-(2+x^2)y=0$ becomes $w'' + w'^2 = x^2+2.$solve (first three terms) $y''-(2+x^2)y=0$ using the method of dominant balance (for large x).
I solved this and got 4 different solutions when I think I should be getting 2.