Maria's question at Yahoo Answers regarding optimization

In summary, the optimization problem involves finding the maximum and minimum total area enclosed by a square and a circle when a piece of wire is cut into two pieces. The optimal amount of wire to be used for the square is found to be 200/(4+π) meters to minimize the area, while none of the wire should go to the square to maximize the area. This can be solved using methods such as finding the axis of symmetry, equating the derivative of the area function to zero, or using optimization with a constraint.
  • #1
MarkFL
Gold Member
MHB
13,288
12
Here is the question:

OPTIMIZATION PROBLEM?

A piece of wire 50 m long is cut into two pieces. One piece is bent into a square and the other is bent into a circle

(a) How much of the wire should go to the square to maximize the total area enclosed by both figures?

(b) How much of the wire should go to the square to minimize the total area enclosed by both figures?

Here is a link to the question:

OPTIMIZATION PROBLEM? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
  • #2
Hello Maria,

Let's let the length of the wire be $L$, and the let $S$ be the portion of the wire used to form the square, and let the portion of the wire that is the circumference of the circle be $C$

Each side of the square will be $\dfrac{S}{4}$, and so the area of the square is:

$\displaystyle A_S=\left(\frac{S}{4} \right)^2=\frac{S^2}{16}$

The area of the circle is:

$A_C=\pi r^2$

Now, the circumference of the circle is $C$ and so the radius of the circle is:

$\displaystyle r=\frac{C}{2\pi}$

hence the area of the circle in terms of $L$ and $C$ is:

$\displaystyle A_C=\pi\left(\frac{C}{2\pi} \right)^2=\frac{C^2}{4\pi}$

Adding the two areas, we find the total area of the two shapes is:

$\displaystyle A=A_S+A_C=\frac{S^2}{16}+\frac{C^2}{4\pi}$

To find the absolute extrema, we first observe we must have:

$0\le S\le L$ which also means $0\le C\le L$

So, we will find the local extrema within this interval, and also look at the area at the end-points of the interval as possible absolute extrema as well.

There are 3 ways to find the local extremum, since the area is a quadratic in $S$.

For the first two methods, we wish to have an area function in one variable, and so we may use:

$C=L-S$

and we have:

$\displaystyle A(S)=\frac{S^2}{16}+\frac{(L-S)^2}{4\pi}$

Method 1: find the axis of symmetry

We will write the area function in standard quadratic form:

$\displaystyle A(S)=\frac{4+\pi}{16\pi}S^2-\frac{L}{2\pi}S+\frac{L^2}{4\pi}$

Thus, the axis of symmetry is at:

$\displaystyle S=-\frac{-\frac{L}{2\pi}}{2\left(\frac{4+\pi}{16\pi} \right)}=\frac{4L}{4+\pi}$

Since the parabola opens upward, we know the global minimum is at this value of $S$.

Thus, this is the amount of the wire that should go to the square to minimize the total area. Analysis of the end-points reveals:

$\displaystyle A(0)=\frac{L^2}{4\pi}$

$\displaystyle A(L)=\frac{L^2}{16}$

Since $A(0)>A(L)$, we find that to maximize the area, none of the wire should go to the square, and this makes sense as a circle will enclose more area per perimeter than a square.

Method 2: Equate derivative of area function to zero and solve for $S$ to get critical value.

$\displaystyle A(S)=\frac{S^2}{16}+\frac{(L-S)^2}{4\pi}$

$\displaystyle A'(S)=\frac{S}{8}-\frac{L-S}{2\pi}=\frac{\pi S-4(L-S)}{8\pi}=0$

This implies:

$\pi S-4(L-S)=0$

$S=\dfrac{4L}{4+\pi}$

The remaining analysis is the same as for Method 1.

Method 3: Use optimization with constraint

We have the objective function:

$\displaystyle A(C,S)=\frac{S^2}{16}+\frac{C^2}{4\pi}$

subject to the constraint:

$g(C,S)=C+S-L=0$

Using Lagrange multipliers, we find:

$\displaystyle \frac{C}{2\pi}=\lambda$

$\displaystyle \frac{S}{8}=\lambda$

this implies:

$\displaystyle \frac{C}{2\pi}=\frac{S}{8}$

$\displaystyle C=\frac{\pi S}{4}$

Substituting this into the constraint, we find:

$\dfrac{\pi S}{4}+S-L=0$

Solving for $S$, we find:

$S=\dfrac{4L}{4+\pi}$

The remaining analysis is the same as for Method 1.

In conclusion, we have found to minimize the area, we need:

$S=\dfrac{4L}{4+\pi}$

Using the given value $L=50\text{ m}$ we find then:

$S=\dfrac{200}{4+\pi}\,\text{m}$

To maximize the area, we need:

$S=0\text{ m}$.

To Maria and other visitors viewing this topic, I invite you to post other calculus problems here:

http://www.mathhelpboards.com/f10/
 

Related to Maria's question at Yahoo Answers regarding optimization

1. What is optimization?

Optimization is the process of finding the best solution to a problem within a given set of constraints. It involves maximizing or minimizing a certain objective function.

2. Why is optimization important?

Optimization is important because it helps us make the best use of resources, time, and effort. It is used in many fields, such as engineering, economics, and computer science, to improve efficiency and effectiveness.

3. What are some common optimization techniques?

Some common optimization techniques include linear programming, gradient descent, genetic algorithms, and simulated annealing. These methods use mathematical and computational approaches to find optimal solutions to problems.

4. How do you determine the objective function in optimization?

The objective function in optimization is determined based on the specific problem at hand. It represents the quantity that needs to be maximized or minimized, such as profit, cost, or efficiency. This function is usually defined by the goals and constraints of the problem.

5. Can optimization be applied to real-life situations?

Yes, optimization is widely used in real-life situations, such as in business operations, logistics, and resource allocation. It can also be applied to personal decision-making, such as finding the most efficient route for a daily commute or the best schedule for completing tasks.

Similar threads

Replies
4
Views
6K
  • General Math
Replies
6
Views
1K
Replies
6
Views
1K
Replies
18
Views
2K
Replies
2
Views
5K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Back
Top