- Thread starter
- #1

#### Alexmahone

##### Active member

- Jan 26, 2012

- 268

Find the inverse Laplace transform of $\displaystyle \frac{2s+7-e^{-2s}}{(s+1)^2}$.

Last edited:

- Thread starter Alexmahone
- Start date

- Thread starter
- #1

- Jan 26, 2012

- 268

Find the inverse Laplace transform of $\displaystyle \frac{2s+7-e^{-2s}}{(s+1)^2}$.

Last edited:

$s^2 + s + 1/4 + 1 - 1/4 = (s + 1/2)^2 + 3/4$Find the inverse Laplace transform of $\displaystyle\frac{2s+5-e^{-2s}}{s^2+s+1}$.

Then break up the numerator.

- Thread starter
- #3

- Jan 26, 2012

- 268

I changed the question. (Sorry about that.)$s^2 + s + 1/4 + 1 - 1/4 = (s + 1/2)^2 + 3/4$

Then break up the numerator.

Then look atI changed the question. (Sorry about that.)

$$

\frac{2s+7}{(s+1)^2} - \frac{e^{-2s}}{(s+1)^2}

$$

The formula for the second piece is

$$

\frac{(t-\tau)^n}{n!}e^{-\alpha(t-\tau)}u(t-\tau) = \mathfrak{L}^{-1}\left[\frac{e^{-\tau s}}{(s+\alpha)^{n+1}}\right]

$$

The other one shouldn't be too bad. Just ask if you need help with that one.