Welcome to our community

Be a part of something great, join today!

Integration by Parts

paulmdrdo

Active member
May 13, 2013
386
any idea how to solve this?

\begin{align*}\displaystyle \int x^3e^{x^{2}}\,dx\end{align*}
 

kaliprasad

Well-known member
Mar 31, 2013
1,322
Re: integration by parts

any idea how to solve this?

\begin{align*}\displaystyle \int x^3e^{x^{2}}\,dx\end{align*}
put x^2 = t

so 2 x dx = dt

so x^3 e^(x^2) dx = t e^t dt / 2

now you can differentiate t and integrate e^t thus by parts.
 

soroban

Well-known member
Feb 2, 2012
409
Re: integration by parts

Hello, paulmdrdo!

[tex]I \;=\; \int x^3e^{x^2}\,dx [/tex]

We have: .[tex]\int x^2\cdot xe^{x^2}dx [/tex]

By parts: .[tex]\begin{Bmatrix}u &=& x^2 && dv &=& xe^{x^2}dx \\ du &=& 2x\,dx && v &=& \tfrac{1}{2}e^{x^2} \end{Bmatrix}[/tex]

Then: .[tex]I \;=\;\tfrac{1}{2}x^2e^{x^2} - \int xe^{x^2}dx [/tex]

. . . . . [tex]I \;=\;\tfrac{1}{2}x^2e^{x^2} - \tfrac{1}{2}e^{x^2} + C[/tex]

. . . . . [tex]I \;=\;\tfrac{1}{2}e^{x^2}(x^2-1) + C[/tex]